Repository logo
 

The Societal Implications of Deep Reinforcement Learning

Published version
Peer-reviewed

Type

Article

Change log

Authors

Arulkumaran, Kai 
Crosby, Matthew 

Abstract

jats:pDeep Reinforcement Learning (DRL) is an avenue of research in Artificial Intelligence (AI) that has received increasing attention within the research community in recent years, and is beginning to show potential for real-world application. DRL is one of the most promising routes towards developing more autonomous AI systems that interact with and take actions in complex real-world environments, and can more flexibly solve a range of problems for which we may not be able to precisely specify a correct ‘answer’. This could have substantial implications for people’s lives: for example by speeding up automation in various sectors, changing the nature and potential harms of online influence, or introducing new safety risks in physical infrastructure. In this paper, we review recent progress in DRL, discuss how this may introduce novel and pressing issues for society, ethics, and governance, and highlight important avenues for future research to better understand DRL’s societal implications. This article appears in the special track on AI and Society. </jats:p>

Description

Keywords

46 Information and Computing Sciences, 4602 Artificial Intelligence, Machine Learning and Artificial Intelligence

Journal Title

Journal of Artificial Intelligence Research

Conference Name

Journal ISSN

1076-9757
1076-9757

Volume Title

70

Publisher

AI Access Foundation

Rights

Publisher's own licence
Sponsorship
Centre For Effective Altruism (Unknown)
Engineering and Physical Sciences Research Council (EP/J021199/1)