The Societal Implications of Deep Reinforcement Learning
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
jats:pDeep Reinforcement Learning (DRL) is an avenue of research in Artificial Intelligence (AI) that has received increasing attention within the research community in recent years, and is beginning to show potential for real-world application. DRL is one of the most promising routes towards developing more autonomous AI systems that interact with and take actions in complex real-world environments, and can more flexibly solve a range of problems for which we may not be able to precisely specify a correct ‘answer’. This could have substantial implications for people’s lives: for example by speeding up automation in various sectors, changing the nature and potential harms of online influence, or introducing new safety risks in physical infrastructure. In this paper, we review recent progress in DRL, discuss how this may introduce novel and pressing issues for society, ethics, and governance, and highlight important avenues for future research to better understand DRL’s societal implications. This article appears in the special track on AI and Society. </jats:p>
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1076-9757
Volume Title
Publisher
Publisher DOI
Rights
Sponsorship
Engineering and Physical Sciences Research Council (EP/J021199/1)