Repository logo
 

Chimpanzees make tactical use of high elevation in territorial contexts.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Lemoine, Sylvain RT  ORCID logo  https://orcid.org/0000-0001-9853-5246
Samuni, Liran 
Crockford, Catherine 
Wittig, Roman M 

Abstract

Tactical warfare is considered a driver of the evolution of human cognition. One such tactic, considered unique to humans, is collective use of high elevation in territorial conflicts. This enables early detection of rivals and low-risk maneuvers, based on information gathered. Whether other animals use such tactics is unknown. With a unique dataset of 3 years of simultaneous behavioral and ranging data on 2 neighboring groups of western chimpanzees, from the Taï National Park, Côte d'Ivoire, we tested whether chimpanzees make decisions consistent with tactical use of topography to gain an advantage over rivals. We show that chimpanzees are more likely to use high hills when traveling to, rather than away from, the border where conflict typically takes place. Once on border hills, chimpanzees favor activities that facilitate information gathering about rivals. Upon leaving hills, movement decisions conformed with lowest risk engagement, indicating that higher elevation facilitates the detection of rivals presence or absence. Our results support the idea that elevation use facilitated rival information gathering and appropriate tactical maneuvers. Landscape use during territorial maneuvers in natural contexts suggests chimpanzees seek otherwise inaccessible information to adjust their behavior and points to the use of sophisticated cognitive abilities, commensurate with selection for cognition in species where individuals gain benefits from coordinated territorial defense. We advocate territorial contexts as a key paradigm for unpicking complex animal cognition.

Description

Keywords

Journal Title

PLoS Biol

Conference Name

Journal ISSN

1544-9173
1545-7885

Volume Title

Publisher

Public Library of Science (PLoS)
Sponsorship
European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 679787); Minerva Foundation; Max Planck Society