The sponge effect and carbon emission mitigation potentials of the global cement cycle
Published version
Peer-reviewed
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
Abstract: Cement plays a dual role in the global carbon cycle like a sponge: its massive production contributes significantly to present-day global anthropogenic CO2 emissions, yet its hydrated products gradually reabsorb substantial amounts of atmospheric CO2 (carbonation) in the future. The role of this sponge effect along the cement cycle (including production, use, and demolition) in carbon emissions mitigation, however, remains hitherto unexplored. Here, we quantify the effects of demand- and supply-side mitigation measures considering this material-energy-emissions-uptake nexus, finding that climate goals would be imperiled if the growth of cement stocks continues. Future reabsorption of CO2 will be significant (~30% of cumulative CO2 emissions from 2015 to 2100), but climate goal compliant net CO2 emissions reduction along the global cement cycle will require both radical technology advancements (e.g., carbon capture and storage) and widespread deployment of material efficiency measures, which go beyond those envisaged in current technology roadmaps.
Description
Funder: Det Frie Forskningsråd (Danish Council for Independent Research); doi: https://doi.org/10.13039/501100004836
Funder: Syddansk Universitet (University of Southern Denmark); doi: https://doi.org/10.13039/501100006356
Funder: RCUK | Engineering and Physical Sciences Research Council (EPSRC); doi: https://doi.org/10.13039/501100000266