Repository logo
 

Proximate drivers of spatial segregation in non-breeding albatrosses

Published version
Peer-reviewed

Type

Article

Change log

Authors

Clay, TA 
Ryan, PG 
Silk, JRD 
Croxall, JP 

Abstract

Many animals partition resources to avoid competition, and in colonially-breeding species this often leads to divergent space or habitat use. During the non-breeding season, foraging constraints are relaxed, yet the patterns and drivers of segregation both between and within populations are poorly understood. We modelled habitat preference to examine how extrinsic (habitat availability and intra-specific competition) and intrinsic factors (population, sex and breeding outcome) influence the distributions of non-breeding grey-headed albatrosses Thalassarche chrysostoma tracked from two major populations, South Georgia (Atlantic Ocean) and the Prince Edward Islands (Indian Ocean). Spatial segregation was greater than expected, reflecting distinct seasonal differences in habitat selection and accessibility, and avoidance of intra-specific competition with local breeders. Previously failed birds segregated spatially from successful birds during summer, when they used less productive waters, suggesting a link between breeding outcome and subsequent habitat selection. In contrast, we found weak evidence of sexual segregation, which did not reflect a difference in habitat use. Our results indicate that the large-scale spatial structuring of albatross distributions results from interactions between extrinsic and intrinsic factors, with important implications for population dynamics. As habitat preferences differed substantially between colonies, populations should be considered independently when identifying critical areas for protection.

Description

Keywords

Animals, Breeding, Butterflies, Ecosystem, Geography, Islands, Population Dynamics, Seasons

Journal Title

Scientific Reports

Conference Name

Journal ISSN

2045-2322
2045-2322

Volume Title

6

Publisher

Nature Publishing Group
Sponsorship
TAC was supported by a studentship funded as part of Natural Environment Research Council (NERC) Standard Grant NE/J021083/1. This study represents a contribution to the Ecosystems component of the British Antarctic Survey Polar Science for Planet Earth Programme, funded by NERC.