Repository logo

Five steps in the evolution from protoplanetary to debris disk

Change log


Wyatt, MC 
Panić, O 
Kennedy, GM 
Matrà, L 


The protoplanetary disks of Herbig Ae stars eventually dissipate leaving a tenuous debris disk comprised of planetesimals and dust, as well as possibly gas and planets. This paper uses the properties of 10-20Myr A star debris disks to consider the protoplanetary to debris disk transition. The physical distinction between these two classes is argued to rest on the presence of primordial gas in sufficient quantities to dominate the motion of small dust grains (not the secondary nature of the dust or its level of stirring). This motivates an observational classification based on the dust spectrum, empirically defined so that A star debris disks require fractional excesses <3 at 12um and <2000 at 70um. We also propose a hypothesis to test, that the main sequence planet/planetesimal structures are already in place (but obscured) during the protoplanetary disk phase. This may be only weakly true if planetary architectures change until frozen during disk dispersal, or completely false if planets and planetesimals form during disk dispersal. Five steps in the transition are discussed: (i) carving an inner hole to form a transition disk; (ii) depletion of mm-sized dust in outer disk, noting the importance of determining whether this mass ends up in planetesimals or is collisionally depleted; (iii) final clearing of inner regions, noting that many mechanisms replenish moderate hot dust levels at later phases, and likely also operate in protoplanetary disks; (iv) disappearence of gas, noting recent discoveries of primordial and secondary gas in debris disks that highlight our ignorance and its impending enlightenment by ALMA; (v) formation of ring-like planetesimal structures, noting these are shaped by interactions with planets, and that the location of planetesimals in protoplanetary disks may be unrelated to the dust concentrations therein that are set by gas interactions.



Protoplanetary disks, Debris disks, Planet formation, Planetesimals, Circumstellar material

Journal Title

Astrophysics and Space Science

Conference Name

Journal ISSN


Volume Title



Springer Science and Business Media LLC
STFC (1369677)
European Research Council (279973)
The authors are grateful for support from the European Union through ERC grant number 279973.