Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene

Change log
Montanaro, A 
Mzali, S 
Mazellier, JP 
Bezencenet, O 
Larat, C 

© 2016 American Chemical Society. The remarkable properties of graphene, such as broadband optical absorption, high carrier mobility, and short photogenerated carrier lifetime, are particularly attractive for high-frequency optoelectronic devices operating at 1.55 μm telecom wavelength. Moreover, the possibility to transfer graphene on a silicon substrate using a complementary metal-oxide-semiconductor-compatible process opens the ability to integrate electronics and optics on a single cost-effective chip. Here, we report an optoelectronic mixer based on chemical vapor-deposited graphene transferred on an oxidized silicon substrate. Our device consists in a coplanar waveguide that integrates a graphene channel, passivated with an atomic layer-deposited Al2O3 film. With this new structure, 30 GHz optoelectronic mixing in commercially available graphene is demonstrated for the first time. In particular, using a 30 GHz intensity-modulated optical signal and a 29.9 GHz electrical signal, we show frequency downconversion to 100 MHz. These results open promising perspectives in the domain of optoelectronics for radar and radio-communication systems.

Graphene, electronics, graphene devices, graphene optoelectronics, optoelectronic mixer, optoelectronics, signal processing
Journal Title
Nano Letters
Conference Name
Journal ISSN
Volume Title
American Chemical Society (ACS)
Engineering and Physical Sciences Research Council (EP/K016636/1)
European Commission (604391)
European Commission (285275)