Wave propagation in pipes of slowly-varying radius with compressible flow
Repository URI
Repository DOI
Change log
Authors
Abstract
The work presented in this thesis studies acoustic perturbations in slowly varying pipes. The slow variation is introduced in the form of a small parameter
Next, the case of mode propagations on a thin elastic shell of varying radius conveying fluid is studied. The acoustic solutions of a straight shell in vacuo are first briefly reviewed and then built up by the addition of radius variation and the presence of a stationary fluid. The work presented first outlines the analysis for wave propagation in a slowly-varying thin elastic shell in vacuo. It is found that the shell and the fluid terms are coupled through the fluid pressure term, which is added to the equation governing the radial shell displacements since the pressure is assumed to affect radial motion only. Once the newly corrected equation for the radial shell displacements has been obtained, together with the axial and azimuthal displacements equations, this new system of governing equations is then separated into leading order