Repository logo
 

Slender-ribbon theory


Type

Article

Change log

Authors

Koens, Lyndon Mathijs  ORCID logo  https://orcid.org/0000-0003-2059-8268

Abstract

Ribbons are long narrow strips possessing three distinct material length scales (thickness, width, and length) which allow them to produce unique shapes unobtainable by wires or filaments. For example when a ribbon has half a twist and is bent into a circle it produces a M"obius strip. Significant effort has gone into determining the structural shapes of ribbons but less is know about their behavior in viscous fluids. In this paper we determine, asymptotically, the leading-order hydrodynamic behavior of a slender ribbon in Stokes flows. The derivation, reminiscent of slender-body theory for filaments, assumes that the length of the ribbon is much larger than its width, which itself is much larger than its thickness. The final result is an integral equation for the force density on a mathematical ruled surface, termed the ribbon plane, located inside the ribbon. A numerical implementation of our derivation shows good agreement with the known hydrodynamics of long flat ellipsoids, and successfully captures the swimming behavior of artificial microscopic swimmers recently explored experimentally. We also study the asymptotic behavior of a ribbon bent into a helix, that of a twisted ellipsoid, and we investigate how accurately the hydrodynamics of a ribbon can be effectively captured by that of a slender filament. Our asymptotic results provide the fundamental framework necessary to predict the behavior of slender ribbons at low Reynolds numbers in a variety of biological and engineering problems.

Description

Keywords

physics.flu-dyn, physics.flu-dyn, cond-mat.soft, physics.bio-ph

Journal Title

Physics of Fluids

Conference Name

Journal ISSN

1070-6631
1089-7666

Volume Title

28

Publisher

AIP Publishing
Sponsorship
This research was funded in part by the European Union through a Marie Curie CIG Grant and the Cambridge Trusts.