Repository logo
 

Effects of positive end-expiratory pressure on cerebral hemodynamics in acute brain injury patients.

Published version
Peer-reviewed

Repository DOI


Change log

Authors

Giardina, Alberto 
Cardim, Danilo 
Ciliberti, Pietro 
Battaglini, Denise 
Ball, Lorenzo 

Abstract

Background: Cerebral autoregulation is the mechanism that allows to maintain the stability of cerebral blood flow despite changes in cerebral perfusion pressure. Maneuvers which increase intrathoracic pressure, such as the application of positive end-expiratory pressure (PEEP), have been always challenged in brain injured patients for the risk of increasing intracranial pressure (ICP) and altering autoregulation. The primary aim of this study is to assess the effect of PEEP increase (from 5 to 15 cmH2O) on cerebral autoregulation. Secondary aims include the effect of PEEP increase on ICP and cerebral oxygenation. Material and Methods: Prospective, observational study including adult mechanically ventilated patients with acute brain injury requiring invasive ICP monitoring and undergoing multimodal neuromonitoring including ICP, cerebral perfusion pressure (CPP) and cerebral oxygenation parameters obtained with near-infrared spectroscopy (NIRS), and an index which expresses cerebral autoregulation (PRx). Additionally, values of arterial blood gases were analyzed at PEEP of 5 and 15 cmH2O. Results are expressed as median (interquartile range). Results: Twenty-five patients were included in this study. The median age was 65 years (46-73). PEEP increase from 5 to 15 cmH2O did not lead to worsened autoregulation (PRx, from 0.17 (-0.003-0.28) to 0.18 (0.01-0.24), p = 0.83). Although ICP and CPP changed significantly (ICP: 11.11 (6.73-15.63) to 13.43 (6.8-16.87) mm Hg, p = 0.003, and CPP: 72.94 (59.19-84) to 66.22 (58.91-78.41) mm Hg, p = 0.004), these parameters did not reach clinically relevant levels. No significant changes in relevant cerebral oxygenation parameters were observed. Conclusion: Slow and gradual increases of PEEP did not alter cerebral autoregulation, ICP, CPP and cerebral oxygenation to levels triggering clinical interventions in acute brain injury patients.

Description

Peer reviewed: True


Acknowledgements: The authors would like to thank the Italian Ministero della Salute for the support.

Keywords

acute brain injury, cerebral autoregulation, intracranial pressure, mechanical ventilation, positive end-expiratory pressure

Journal Title

Front Physiol

Conference Name

Journal ISSN

1664-042X
1664-042X

Volume Title

Publisher

Frontiers Media SA