Repository logo
 

Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma.

Accepted version
Peer-reviewed

Type

Article

Change log

Abstract

Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.

Description

Keywords

Anaplastic Lymphoma Kinase, Animals, Antineoplastic Agents, Cell Line, Tumor, Crizotinib, Humans, Lymphoma, Large-Cell, Anaplastic, Mice, Inbred NOD, Mice, SCID, Protein Kinase Inhibitors, Protein Tyrosine Phosphatase, Non-Receptor Type 1, Protein Tyrosine Phosphatase, Non-Receptor Type 2, Mice

Journal Title

Blood

Conference Name

Journal ISSN

0006-4971
1528-0020

Volume Title

Publisher

American Society of Hematology

Rights

All rights reserved
Sponsorship
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (675712)