Repository logo
 

Internal friction controls active ciliary oscillations near the instability threshold.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Adhikari, Ronojoy 

Abstract

Ciliary oscillations driven by molecular motors cause fluid motion at micron scale. Stable oscillations require a substantial source of dissipation to balance the energy input of motors. Conventionally, it stems from external fluid. We show, in contrast, that external fluid friction is negligible compared to internal elastic stress through a simultaneous measurement of motion and flow field of an isolated and active Chlamydomonas cilium beating near the instability threshold. Consequently, internal friction emerges as the sole source of dissipation for ciliary oscillations. We combine these experimental insights with theoretical modeling of active filaments to show that an instability to oscillations takes place when active stresses are strain softening and shear thinning. Together, our results reveal a counterintuitive mechanism of ciliary beating and provide a general experimental and theoretical methodology to analyze other active filaments, both biological and synthetic ones.

Description

Keywords

4012 Fluid Mechanics and Thermal Engineering, 40 Engineering, Generic health relevance

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

6

Publisher

American Association for the Advancement of Science (AAAS)