Deductive reasoning about expressive statements using external graphical representations
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Research in psychology on reasoning has often been restricted to relatively inexpressive statements involving quantifiers. This is limited to situations that typically do not arise in practical settings, such as ontology engineering. In order to provide an analysis of inference, we focus on reasoning tasks presented in external graphic representations where statements correspond to those involving multiple quantifiers and unary and binary relations. Our experiment measured participants’ performance when reasoning with two notations. The first used topology to convey information via node-link diagrams (i.e. graphs). The second used topological and spatial constraints to convey information (Euler diagrams with additional graph-like syntax). We found that topological- spatial representations were more effective than topological representations. Unlike topological-spatial representations, reasoning with topological representations was harder when involving multiple quantifiers and binary relations than single quantifiers and unary relations. These findings are compared to those for sentential reasoning tasks.