Repository logo
 

Topography shapes the structure, composition and function of tropical forest landscapes.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Jucker, Tommaso 
Bongalov, Boris 
Burslem, David FRP 
Nilus, Reuben 
Dalponte, Michele 

Abstract

Topography is a key driver of tropical forest structure and composition, as it constrains local nutrient and hydraulic conditions within which trees grow. Yet, we do not fully understand how changes in forest physiognomy driven by topography impact other emergent properties of forests, such as their aboveground carbon density (ACD). Working in Borneo - at a site where 70-m-tall forests in alluvial valleys rapidly transition to stunted heath forests on nutrient-depleted dip slopes - we combined field data with airborne laser scanning and hyperspectral imaging to characterise how topography shapes the vertical structure, wood density, diversity and ACD of nearly 15 km2 of old-growth forest. We found that subtle differences in elevation - which control soil chemistry and hydrology - profoundly influenced the structure, composition and diversity of the canopy. Capturing these processes was critical to explaining landscape-scale heterogeneity in ACD, highlighting how emerging remote sensing technologies can provide new insights into long-standing ecological questions.

Description

Keywords

Aboveground carbon density, airborne laser scanning (or LiDAR), biodiversity, canopy height, gap fraction, hyperspectral imaging, remote sensing, terrain elevation, slope and curvature, wood density, Borneo, Forests, Remote Sensing Technology, Trees, Tropical Climate

Journal Title

Ecol Lett

Conference Name

Journal ISSN

1461-023X
1461-0248

Volume Title

21

Publisher

Wiley
Sponsorship
Natural Environment Research Council (NE/K016377/1)
Leverhulme Trust (IAF-2015-033)
Natural Environment Research Council (NE/K016253/1)
NERC (1665305)
NERC (2073294)