Show simple item record

dc.contributor.advisorCoates, John
dc.contributor.authorLee, Chern-Yang
dc.date.accessioned2010-09-23T15:20:17Z
dc.date.available2010-09-23T15:20:17Z
dc.date.issued2010-07-06
dc.identifier.otherPhD.33398
dc.identifier.urihttp://www.dspace.cam.ac.uk/handle/1810/226462
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/226462
dc.description.abstractLet E be an elliptic curve defined over the rationals Q, and p be a prime at least 5 where E has multiplicative reduction. This thesis studies the Iwasawa theory of E over certain false Tate curve extensions F[infinity], with Galois group G = Gal(F[infinity]/Q). I show how the p[infinity]-Selmer group of E over F[infinity] controls the p[infinity]-Selmer rank growth within the false Tate curve extension, and how it is connected to the root numbers of E twisted by absolutely irreducible orthogonal Artin representations of G, and investigate the parity conjecture for twisted modules.en_GB
dc.language.isoenen_GB
dc.subjectIwasawa theoryen_GB
dc.subjectParity conjectureen_GB
dc.subjectElliptic curvesen_GB
dc.titleNon-commutative Iwasawa theory of elliptic curves at primes of multiplicative reductionen_GB
dc.typeThesisen_GB
dc.type.qualificationlevelDoctoral
dc.type.qualificationnameDoctor of Philosophy (PhD)
dc.publisher.institutionUniversity of Cambridgeen_GB
dc.publisher.departmentDepartment of Pure Mathematics and Mathematical Statisticsen_GB
dc.identifier.doi10.17863/CAM.16211


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record