Show simple item record

dc.contributor.advisorKlenerman, David
dc.contributor.authorPalayret, Matthieu Grégoire Simon
dc.date.accessioned2015-11-23T12:09:34Z
dc.date.available2015-11-23T12:09:34Z
dc.date.issued2015-10-06
dc.identifier.otherPhD.39034
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/252696
dc.description.abstractSingle-molecule localisation microscopy (SMLM) allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. As a single-molecule technique, it has also introduced a new quantitative approach to fluorescence microscopy. In the Part A of this thesis, the design and building of three SMLM instruments, the implementation of a custom-developed image analysis package and the characterisation of the photo-physical properties of the photo-activable fluorescent protein used in this thesis (mEos), are discussed. Then, a new post-processing method for SMLM analysis is characterised: axial optical sectioning of SMLM images is demonstrated by thresholding fitted localisations using their fitted width and amplitude to reject fluorophores that emit from above or below a virtual ‘light-sheet’, a thin volume centred on the focal plane of the microscope. This method provides qualitative and quantitative improvements to SMLM. In the Part B of this thesis, SMLM is applied to study T cell activation. Although the T cell receptor plays a key role in immunity, its stoichiometry in the membrane of resting T cells is still a matter of debate. Here, single-molecule counting methods are implemented to compare the stoichiometry of TCRs fused with mEos2 in resting T cells to monomeric and dimeric controls. However, because of the stochasticity of mEos2 photo-physics, results are inconclusive and new counting techniques based on structural imaging are discussed. In addition to TCR triggering, T cells require the co-stimulatory triggering of the CD28 transmembrane receptor to become fully activated. However, some immobilised anti-CD28 antibodies, referred to as super-agonists (SA), can directly activate T cells without triggering the TCR. In this thesis, single-molecule tracking techniques are used to investigate the molecular mechanism of CD28 super-agonism in live T cells. The results indicate that the diffusion of CD28 is slowed by SA binding. This effect is further discussed in light of the kinetic-segregation model proposed for TCR triggering. Quantitative SMLM as implemented and further developed in this work offers new tools to investigate the molecular mechanisms initiating T cell activation, ultimately facilitating the discovery of novel approaches to target these pathways for therapeutic purposes.en
dc.description.sponsorshipThis work was supported by the Wellcome Trust [studentship number 093756/B/10/Z].en
dc.language.isoenen
dc.rightsAttribution 2.0 UK: England & Wales*
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/uk/*
dc.subjectT-cell receptoren
dc.subjectkinetic-segregationen
dc.subjectCD28 super-agonisten
dc.subjectsingle-molecule localisation microscopyen
dc.subjectsuper-resolution fluorescence microscopyen
dc.subjectvirtual 'light-sheet'en
dc.subjectoptical sectioningen
dc.titleApplying single-molecule localisation microscopy to achieve virtual optical sectioning and study T-cell activationen
dc.typeThesisen
dc.type.qualificationlevelDoctoral
dc.type.qualificationnameDoctor of Philosophy (PhD)
dc.publisher.institutionUniversity of Cambridgeen
dc.publisher.departmentDepartment of Chemistryen
dc.identifier.doi10.17863/CAM.16306
rioxxterms.freetoread.startdate2017-09-01


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 2.0 UK: England & Wales
Except where otherwise noted, this item's licence is described as Attribution 2.0 UK: England & Wales