Show simple item record

dc.contributor.authorKeating, Laura Cen
dc.contributor.authorPuchwein, Ewalden
dc.contributor.authorHaehnelt, Martinen
dc.date.accessioned2018-09-13T09:07:36Z
dc.date.available2018-09-13T09:07:36Z
dc.date.issued2018-07-11en
dc.identifier.issn0035-8711
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/280254
dc.description.abstractThe thermal state of the post-reionization IGM is sensitive to the timing of reionization and the nature of the ionizing sources. We have modelled here the thermal state of the IGM in cosmological radiative transfer simulations of a realistic, extended, spatially inhomogeneous hydrogen reionization process, carefully calibrated with Ly α forest data. We compare these with cosmological simulations run using a spatially homogeneous ionizing background. The simulations with a realistic growth of ionized regions and a realistic spread in reionization redshifts show, as expected, significant spatial fluctuations in the temperature–density relation (TDR) of the post-reionization IGM. The most recently ionized regions are hottest and exhibit a flatter TDR. In simulations consistent with the average TDR inferred from Ly α forest data, these spatial fluctuations have a moderate but noticeable effect on the statistical properties of the Ly α opacity of the IGM at z ∼ 4–6. This should be taken into account in accurate measurements of the thermal properties of the IGM and the free-streaming of dark matter from Ly α forest data in this redshift range. The spatial variations of the TDR predicted by our simulations are, however, smaller by about a factor of 2 than would be necessary to explain the observed large spatial opacity fluctuations on large (≥50 h−1 comoving Mpc) scales atz ≳ 5.5.
dc.description.sponsorshipLCK acknowledges the support of a CITA postdoctoral fellowship, an Isaac Newton studentship, the Cambridge Trust, and STFC. Support by the FP7 ERC Advanced Grant Emergence-320596 is gratefully acknowledged. EP acknowledges support from the Kavli Foundation. This work used the DiRAC Data Analytic system at the University of Cambridge, operated by the University of Cambridge High Performance Computing Service on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant (ST/K001590/1), STFC capital grants ST/H008861/1 and ST/H00887X/1, and STFC DiRAC Operations grant ST/K00333X/1. DiRAC is part of the National E-Infrastructure. This research was supported by the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence ‘Origin and Structure of the Universe’.
dc.publisherOxford University Press
dc.subjectmethods: numericalen
dc.subjectgalaxies: high-redshiften
dc.subjectintergalactic mediumen
dc.subjectquasars: absorption linesen
dc.subjectdark agesen
dc.subjectreionizationen
dc.subjectfirst starsen
dc.titleSpatial fluctuations of the intergalactic temperature-density relation after hydrogen reionizationen
dc.typeArticle
prism.endingPage5516
prism.issueIdentifier4en
prism.publicationDate2018en
prism.publicationNameMonthly Notices of the Royal Astronomical Societyen
prism.startingPage5501
prism.volume477en
dc.identifier.doi10.17863/CAM.27622
dcterms.dateAccepted2018-04-07en
rioxxterms.versionofrecord10.1093/mnras/sty968en
rioxxterms.versionVoR*
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2018-07-11en
dc.contributor.orcidHaehnelt, Martin [0000-0001-8443-2393]
dc.identifier.eissn1365-2966
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEuropean Research Council (320596)
pubs.funder-project-idSTFC (ST/H008861/1)
pubs.funder-project-idSTFC (ST/K001590/1)
pubs.funder-project-idSTFC (ST/K00333X/1)
pubs.funder-project-idSTFC (ST/P000673/1)
pubs.funder-project-idSTFC (ST/L000636/1)
cam.issuedOnline2018-04-18en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record