Show simple item record

dc.contributor.authorChiodo, Mauriceen
dc.contributor.authorVyas, Rishien
dc.date.accessioned2018-09-20T12:05:44Z
dc.date.available2018-09-20T12:05:44Z
dc.date.issued2018-09-01en
dc.identifier.issn1433-5883
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/280509
dc.description.abstractWe show that a construction by Aanderaa and Cohen used in their proof of the Higman Embedding Theorem preserves torsion length. We give a new construction showing that every finitely presented group is the quotient of some C'(1/6) finitely presented group by the subgroup generated by its torsion elements. We use these results to show there is a finitely presented group with infinite torsion length which is C'(1/6), and thus word-hyperbolic and virtually torsion-free.
dc.languageenen
dc.titleTorsion, torsion length and finitely presented groupsen
dc.typeArticle
prism.endingPage971
prism.issueIdentifier5en
prism.publicationDate2018en
prism.publicationNameJournal of Group Theoryen
prism.startingPage949
prism.volume21en
dc.identifier.doi10.17863/CAM.27879
dcterms.dateAccepted2018-05-04en
rioxxterms.versionofrecord10.1515/jgth-2018-0022en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2018-09-01en
dc.identifier.eissn1435-4446
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (659102)
cam.issuedOnline2018-06-19en
rioxxterms.freetoread.startdate2019-06-19


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record