Seismic performance of buildings with structural and foundation rocking in centrifuge testing
dc.contributor.author | Pelekis, Iason | |
dc.contributor.author | Madabhushi, Gopal | |
dc.contributor.author | De Jong, Matthew | |
dc.date.accessioned | 2018-09-27T14:11:47Z | |
dc.date.available | 2018-09-27T14:11:47Z | |
dc.date.issued | 2018-10-10 | |
dc.identifier.issn | 0098-8847 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/282831 | |
dc.description.abstract | Rocking motion, established in either the superstructure in the form of a two-point stepping mechanism (structural rocking), or resulting from rotational motion of the foundation on the soil (foundation rocking), is considered an effective, low cost base isolation technique. This paper unifies for the first time the two types of rocking motion under a common experimental campaign, so that on the one hand, structural rocking can be examined under the influence of soil and on the other, foundation rocking can be examined under the influence of a linear elastic superstructure. Two building models, designed to rock above or below their foundation level so that they can reproduce structural and foundation rocking, respectively, were tested side-by-side in a centrifuge. The models were placed on a dry sandbed and subjected to a sequence of earthquake motions. The range of rocking amplitude that is required for base isolation was quantified. Overall, it is shown that the relative density of sand does not influence structural rocking, while for foundation rocking, the change from dense to loose sand can affect the time-frequency response significantly and lead to a more predictable behaviour. | |
dc.description.sponsorship | The authors gracefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding this research through the EPSRC Centre for Doctoral Training in Future Infrastructure and Built Environment (EPSRC grant reference number EP/L016095/1). | |
dc.publisher | Wiley | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Seismic performance of buildings with structural and foundation rocking in centrifuge testing | |
dc.type | Article | |
prism.endingPage | 2409 | |
prism.issueIdentifier | 12 | |
prism.publicationDate | 2018 | |
prism.publicationName | Earthquake Engineering and Structural Dynamics | |
prism.startingPage | 2390 | |
prism.volume | 47 | |
dc.identifier.doi | 10.17863/CAM.30195 | |
dcterms.dateAccepted | 2018-06-07 | |
rioxxterms.versionofrecord | 10.1002/eqe.3089 | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
rioxxterms.licenseref.startdate | 2018-10-10 | |
dc.contributor.orcid | Pelekis, Iason [0000-0001-8425-3723] | |
dc.contributor.orcid | Madabhushi, Gopal [0000-0003-4031-8761] | |
dc.contributor.orcid | De Jong, Matthew [0000-0002-6195-839X] | |
dc.identifier.eissn | 1096-9845 | |
rioxxterms.type | Journal Article/Review | |
pubs.funder-project-id | EPSRC (1549458) | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/L016095/1) | |
cam.issuedOnline | 2018-07-19 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge