Repository logo
 

Biodegradable Polycarbonate Iongels for Electrophysiology Measurements.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Y Yuen, Alexander 
H Aguirresarobe, Robert 
Sanchez-Sanchez, Ana  ORCID logo  https://orcid.org/0000-0001-6871-5860
Del Agua, Isabel 

Abstract

In recent years, gels based on ionic liquids incorporated into polymer matrices, namely iongels, have emerged as long-term contact media for cutaneous electrophysiology. Iongels possess high ionic conductivity and negligible vapor pressure and can be designed on demand. In spite of the extensive efforts devoted to the preparation of biodegradable ionic liquids, the investigations related to the preparation of iongels based on biodegradable polymers remain scarce. In this work, biodegradable polycarbonate-based iongels are prepared by ring-opening polymerization of N-substituted eight ring membered cyclic carbonate monomers in the presence of imidazolium lactate ionic liquid. Our iongels are able to take up 10⁻30 wt % of ionic liquid and become softer materials by increasing the amount of free ionic liquid. Rheological measurements showed that the cross-over point between the storage modulus G' and loss modulus G″ occurs at lower angular frequencies when the loading of free ionic liquid increases. These gels are able to take up to 30 wt % of the ionic liquid and the ionic conductivity of these gels increased up to 5 × 10-4 S·cm-1 at 25 °C as the amount of free ionic liquid increased. Additionally, we assess the biodegradation studies of the iongels by immersing them in water. The iongels decrease the impedance with the human skin to levels that are similar to commercial Ag/AgCl electrodes, allowing an accurate physiologic signals recording. The low toxicity and biodegradability of polycarbonate-based iongels make these materials highly attractive for cutaneous electrophysiology applications.

Description

Keywords

biodegradable, electrodes, electrophysiology, iongels, polycarbonate

Journal Title

Polymers (Basel)

Conference Name

Journal ISSN

2073-4360
2073-4360

Volume Title

10

Publisher

MDPI AG
Sponsorship
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (742865)