Show simple item record

dc.contributor.authorKuscu, Muraten
dc.contributor.authorAkan, Ozguren
dc.date.accessioned2018-12-18T00:30:30Z
dc.date.available2018-12-18T00:30:30Z
dc.date.issued2018-03en
dc.identifier.issn1536-1241
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/287022
dc.description.abstractMolecular Communication (MC) is a bio-inspired communication technique that uses molecules as a method of information transfer among nanoscale devices. MC receiver is an essential component having profound impact on the communication system performance. However, the interaction of the receiver with information bearing molecules has been usually oversimplified in modeling the reception process and developing signal detection techniques. In this paper, we focus on the signal detection problem of MC receivers employing receptor molecules to infer the transmitted messages encoded into the concentration of molecules, i.e., ligands. Exploiting the observable characteristics of ligand-receptor binding reaction, we first introduce a Maximum Likelihood (ML) detection method based on instantaneous receptor occupation ratio, as aligned with the current MC literature. Then, we propose a novel ML detection technique, which exploits the amount of time the receptors stay unbound in an observation time window. A comprehensive analysis is carried out to compare the performance of the detectors in terms of bit error probability. In evaluating the detection performance, emphasis is given to the receptor saturation problem resulting from the accumulation of messenger molecules at the receiver as a consequence of intersymbol interference. The results reveal that detection based on receptor unbound time is quite reliable even in saturation, whereas the reliability of detection based on receptor occupation ratio substantially decreases as the receiver gets saturated. Finally, we also discuss the potential methods of implementing the detectors.
dc.format.mediumPrinten
dc.languageengen
dc.subjectLigandsen
dc.subjectBiotechnologyen
dc.subjectDiffusionen
dc.subjectNanotechnologyen
dc.subjectModels, Biologicalen
dc.subjectInterneten
dc.subjectComputers, Molecularen
dc.titleMaximum Likelihood Detection With Ligand Receptors for Diffusion-Based Molecular Communications in Internet of Bio-Nano Things.en
dc.typeArticle
prism.endingPage54
prism.issueIdentifier1en
prism.publicationDate2018en
prism.publicationNameIEEE transactions on nanobioscienceen
prism.startingPage44
prism.volume17en
dc.identifier.doi10.17863/CAM.34332
dcterms.dateAccepted2018-01-06en
rioxxterms.versionofrecord10.1109/tnb.2018.2792434en
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2018-03en
dc.contributor.orcidKuscu, Murat [0000-0002-8463-6027]
dc.contributor.orcidAkan, Ozgur [0000-0003-2523-3858]
dc.identifier.eissn1558-2639
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEuropean Commission FP7 ERC Consolidator Grant (616922)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (665564)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record