Repository logo
 

Bayesian sparse reconstruction: a brute-force approach to astronomical imaging and machine learning

Published version
Peer-reviewed

Type

Article

Change log

Authors

Hobson, Michael 

Abstract

We present a principled Bayesian framework for signal reconstruction, in which the signal is modelled by basis functions whose number (and form, if required) is determined by the data themselves. This approach is based on a Bayesian interpretation of conventional sparse reconstruction and regularisation techniques, in which sparsity is imposed through priors via Bayesian model selection. We demonstrate our method for noisy 1- and 2-dimensional signals, including astronomical images. Furthermore, by using a product-space approach, the number and type of basis functions can be treated as integer parameters and their posterior distributions sampled directly. We show that order-of-magnitude increases in computational efficiency are possible from this technique compared to calculating the Bayesian evidences separately, and that further computational gains are possible using it in combination with dynamic nested sampling. Our approach can also be readily applied to neural networks, where it allows the network architecture to be determined by the data in a principled Bayesian manner by treating the number of nodes and hidden layers as parameters.

Description

Keywords

astro-ph.IM, astro-ph.IM, stat.ME, stat.ML

Journal Title

MNRAS

Conference Name

Journal ISSN

0035-8711
1365-2966

Volume Title

Publisher

Oxford University Press (OUP)
Sponsorship
Science and Technology Facilities Council (ST/M001172/1)
This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council.