Show simple item record

dc.contributor.authorPadovani, Jen
dc.contributor.authorLegland, Den
dc.contributor.authorPernes, Men
dc.contributor.authorGallos, Aen
dc.contributor.authorThomachot-Schneider, Cen
dc.contributor.authorShah, Darshilen
dc.contributor.authorBourmaud, Aen
dc.contributor.authorBeaugrand, Jen
dc.date.accessioned2019-05-07T23:30:39Z
dc.date.available2019-05-07T23:30:39Z
dc.date.issued2019-06-15en
dc.identifier.issn0969-0239
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/292472
dc.description.abstractIn this study, a gradually increased hydro-mechanical treatments duration were applied to native hemp bast fibres with a traditional pulp and paper beating device (laboratory Valley beater). There is often a trade-off between the treatment applied to the fibres and the effect on their integrity. The multimodal analysis provided an understanding of the beating impact on the fibres at multiple scales and the experimental design made it possible to distinguish the effects of hydro- and hydro-mechanical treatment. Porosity analyses showed that beating treatment doubled the macroporosity and possibly reduced nanoporosity between the cellulose microfibrils. The beating irregularly extracted the amorphous components known to be preferentially located in the middle lamellae and the primary cell walls rather than in the secondary walls, the overall increasing the crystallinity of cellulose from 49.3 % to 59.1 %, but a non-significant change in the indentation moduli of the cell wall was observed. In addition, beating treatments with two distinct mechanical severities showed a disorganization of the cellulose conformation, which significant dropped the indention moduli by 11.2 GPa and 8.4 GPa for 10 and 20 minutes of Valley beater hydro-mechanical treatment, respectively, compared to hydro-treated hemp fibres (16.6 GPa). Pearson’s correlation coefficients between physicochemical features and the final indentation moduli were calculated. Strong positive correlations were highlighted between the cellulose crystallinity and rhamnose, galactose and mannose as non-cellulosic polysaccharide components of the cell wall.
dc.publisherSpringer Netherlands
dc.rightsAll rights reserved
dc.titleBeating of hemp bast fibres: an examination of a hydro-mechanical treatment on chemical, structural, and nanomechanical property evolutionsen
dc.typeArticle
prism.endingPage5683
prism.issueIdentifier9en
prism.publicationDate2019en
prism.publicationNameCelluloseen
prism.startingPage5665
prism.volume26en
dc.identifier.doi10.17863/CAM.39632
dcterms.dateAccepted2019-04-23en
rioxxterms.versionofrecord10.1007/s10570-019-02456-3en
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2019-06-15en
dc.contributor.orcidShah, Darshil [0000-0002-8078-6802]
dc.contributor.orcidBeaugrand, J [0000-0002-8643-9086]
dc.identifier.eissn1572-882X
rioxxterms.typeJournal Article/Reviewen
cam.orpheus.successThu Jan 30 10:47:40 GMT 2020 - Embargo updated*
rioxxterms.freetoread.startdate2020-06-15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record