Looking for Hyponyms in Vector Space.
dc.contributor.author | Rei, Marek | en |
dc.contributor.author | Briscoe, Edward | en |
dc.contributor.editor | Morante, R | en |
dc.contributor.editor | Yih, W-T | en |
dc.date.accessioned | 2019-07-26T13:11:51Z | |
dc.date.available | 2019-07-26T13:11:51Z | |
dc.date.issued | 2014-06-26 | en |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/294973 | |
dc.description.abstract | The task of detecting and generating hyponyms is at the core of semantic understanding of language, and has numerous practical applications. We investigate how neural network embeddings perform on this task, compared to dependency-based vector space models, and evaluate a range of similarity measures on hyponym generation. A new asymmetric similarity measure and a combination approach are described, both of which significantly improve precision. We release three new datasets of lexical vector representations trained on the BNC and our evaluation dataset for hyponym generation. | |
dc.language.iso | en | en |
dc.publisher | ACL | |
dc.title | Looking for Hyponyms in Vector Space. | en |
dc.type | Conference Object | |
prism.endingPage | 77 | |
prism.publicationDate | 2014 | en |
prism.publicationName | CoNLL | en |
prism.startingPage | 68 | |
dc.identifier.doi | 10.17863/CAM.21360 | |
dcterms.dateAccepted | 2014-04-21 | en |
rioxxterms.version | AM | en |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | en |
rioxxterms.licenseref.startdate | 2014-06-26 | en |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en |
cam.issuedOnline | 2014-06-26 | en |
dc.identifier.url | http://www.aclweb.org/anthology/K/K14/#2014_0 | en |
pubs.conference-name | Eighteenth Conference on Computational Natural Language Learning | en |
pubs.conference-start-date | 2014-06-26 | en |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge