Show simple item record

dc.contributor.authorGabbay, MJ
dc.contributor.authorGabbay, Murdoch
dc.date.accessioned2019-07-30T13:23:59Z
dc.date.available2019-07-30T13:23:59Z
dc.date.issued2014-12-24
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/295072
dc.description.abstractWe present a sound and complete model theory for theories of -reduction with or without -expansion. The models of this paper derive from structures of modal logic: we use ternary accessibility relations on ‘possible worlds’ to model the action of intensional and extensional lambda-abstraction in much the same way binary accessibility relations are used to model the box operators of a normal multi-modal logic.
dc.languageEnglish
dc.language.isoen
dc.publisherCollege Publications
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleA Simple and Complete Model Theory for Intensional and Extensional Untyped Lambda-Equality
dc.typeArticle
prism.endingPage83
prism.issueIdentifier2
prism.publicationDate2014
prism.publicationNameIfCoLoG Journal of Logics and their Applications
prism.startingPage83
prism.volume1
dc.identifier.doi10.17863/CAM.42150
dcterms.dateAccepted2014-08-31
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
rioxxterms.licenseref.startdate2014-12-24
rioxxterms.typeJournal Article/Review
pubs.funder-project-idInternational Federation for Computational Logic (IFCoLog) (unknown)
cam.issuedOnline2014-12-12


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International