Variational implicit processes
dc.contributor.author | Ma, C | |
dc.contributor.author | Li, Y | |
dc.contributor.author | Hernández-Lobato, JM | |
dc.date.accessioned | 2019-07-31T11:31:49Z | |
dc.date.available | 2019-07-31T11:31:49Z | |
dc.date.issued | 2019 | |
dc.identifier.isbn | 9781510886988 | |
dc.identifier.issn | 2640-3498 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/295114 | |
dc.description.abstract | We introduce the implicit processes (IPs), a stochastic process that places implicitly defined multivariate distributions over any finite collections of random variables. IPs are therefore highly flexible implicit priors over functions, with examples including data simulators, Bayesian neural networks and non-linear transformations of stochastic processes. A novel and efficient approximate inference algorithm for IPs, namely the variational implicit processes (VIPs), is derived using generalised wake-sleep updates. This method returns simple update equations and allows scalable hyper-parameter learning with stochastic optimization. Experiments show that VIPs return better uncertainty estimates and lower errors over existing inference methods for challenging models such as Bayesian neural networks, and Gaussian processes. | |
dc.language.iso | en | |
dc.title | Variational implicit processes | |
dc.type | Conference Object | |
prism.endingPage | 7482 | |
prism.publicationDate | 2019 | |
prism.publicationName | 36th International Conference on Machine Learning, ICML 2019 | |
prism.startingPage | 7464 | |
prism.volume | 2019-June | |
dc.identifier.doi | 10.17863/CAM.42186 | |
rioxxterms.versionofrecord | 10.17863/CAM.42186 | |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
rioxxterms.licenseref.startdate | 2019-01-01 | |
rioxxterms.type | Conference Paper/Proceeding/Abstract |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge