Bayesian Fusion of Asynchronous Inertial, Speed and Position Data for Object Tracking
dc.contributor.author | Liang, Jiaming | en |
dc.contributor.author | Godsill, S | en |
dc.date.accessioned | 2019-10-30T00:30:10Z | |
dc.date.available | 2019-10-30T00:30:10Z | |
dc.date.issued | 2019-05-01 | en |
dc.identifier.isbn | 9781479981311 | en |
dc.identifier.issn | 1520-6149 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/298178 | |
dc.description.abstract | In this paper we present Bayesian methods for tracking scenarios in which an intrinsic coordinate model is considered and inertial mea- surements plus occasional position fixes are available. The methods are first tested using synthetic data, giving a comprehensive evalu- ation as to their performance. Further evaluation on real data also reveals our approaches can be favourable alternatives to existing in- ertial tracking/navigation models. | |
dc.rights | All rights reserved | |
dc.rights.uri | ||
dc.title | Bayesian Fusion of Asynchronous Inertial, Speed and Position Data for Object Tracking | en |
dc.type | Conference Object | |
prism.endingPage | 5216 | |
prism.publicationDate | 2019 | en |
prism.publicationName | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings | en |
prism.startingPage | 5212 | |
prism.volume | 2019-May | en |
dc.identifier.doi | 10.17863/CAM.45232 | |
dcterms.dateAccepted | 2019-02-01 | en |
rioxxterms.versionofrecord | 10.1109/ICASSP.2019.8683469 | en |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | en |
rioxxterms.licenseref.startdate | 2019-05-01 | en |
dc.contributor.orcid | Liang, Jiaming [0000-0002-1318-4481] | |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en |
rioxxterms.freetoread.startdate | 2020-05-01 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge