Show simple item record

dc.contributor.authorDoherty, Tiarnan
dc.contributor.authorWinchester, Andrew J
dc.contributor.authorMacpherson, Stuart
dc.contributor.authorJohnstone, Duncan
dc.contributor.authorPareek, Vivek
dc.contributor.authorTennyson, Beth
dc.contributor.authorKosar, Sofiia
dc.contributor.authorKosasih, Felix
dc.contributor.authorAnaya, Miguel
dc.contributor.authorAbdi-Jalebi, Mojtaba
dc.contributor.authorAndaji-Garmaroudi, Zahra
dc.contributor.authorWong, E Laine
dc.contributor.authorMadéo, Julien
dc.contributor.authorChiang, Yu-Hsien
dc.contributor.authorPark, Ji-Sang
dc.contributor.authorJung, Young-Kwang
dc.contributor.authorPetoukhoff, Christopher E
dc.contributor.authorDivitini, Giorgio
dc.contributor.authorMan, Michael KL
dc.contributor.authorDucati, Caterina
dc.contributor.authorWalsh, Aron
dc.contributor.authorMidgley, Paul
dc.contributor.authorDani, Keshav M
dc.contributor.authorStranks, Samuel
dc.date.accessioned2020-06-22T23:31:41Z
dc.date.available2020-06-22T23:31:41Z
dc.date.issued2020-04
dc.identifier.issn0028-0836
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/307108
dc.description.abstractHalide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.
dc.format.mediumPrint-Electronic
dc.languageeng
dc.publisherSpringer Science and Business Media LLC
dc.rightsAll rights reserved
dc.titlePerformance-limiting nanoscale trap clusters at grain junctions in halide perovskites.
dc.typeArticle
prism.endingPage366
prism.issueIdentifier7803
prism.publicationDate2020
prism.publicationNameNature
prism.startingPage360
prism.volume580
dc.identifier.doi10.17863/CAM.54201
dcterms.dateAccepted2020-02-17
rioxxterms.versionofrecord10.1038/s41586-020-2184-1
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2020-04-15
dc.contributor.orcidDoherty, Tiarnan [0000-0003-1150-4012]
dc.contributor.orcidMacpherson, Stuart [0000-0003-3758-1198]
dc.contributor.orcidJohnstone, Duncan [0000-0003-3663-3793]
dc.contributor.orcidTennyson, Beth [0000-0003-0071-8445]
dc.contributor.orcidKosasih, Felix [0000-0003-1060-4003]
dc.contributor.orcidAnaya, Miguel [0000-0002-0384-5338]
dc.contributor.orcidAbdi-Jalebi, Mojtaba [0000-0002-9430-6371]
dc.contributor.orcidWong, E Laine [0000-0002-2286-8527]
dc.contributor.orcidMadéo, Julien [0000-0002-1711-5010]
dc.contributor.orcidJung, Young-Kwang [0000-0003-3848-8163]
dc.contributor.orcidDivitini, Giorgio [0000-0003-2775-610X]
dc.contributor.orcidMan, Michael KL [0000-0001-6043-3631]
dc.contributor.orcidDucati, Caterina [0000-0003-3366-6442]
dc.contributor.orcidWalsh, Aron [0000-0001-5460-7033]
dc.contributor.orcidMidgley, Paul [0000-0002-6817-458X]
dc.contributor.orcidDani, Keshav M [0000-0003-3917-6305]
dc.contributor.orcidStranks, Samuel [0000-0002-8303-7292]
dc.identifier.eissn1476-4687
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P007767/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R008779/1)
pubs.funder-project-idEuropean Research Council (756962)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R023980/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P024947/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (841386)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/S019367/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R00661X/1)
cam.issuedOnline2020-04-15
datacite.issupplementedby.urlhttps://doi.org/10.17863/CAM.48273
cam.orpheus.successMon Jun 29 08:55:22 BST 2020 - Embargo updated
rioxxterms.freetoread.startdate2020-10-15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record