Show simple item record

dc.contributor.authorBaldwin, alan
dc.contributor.authorDelport, geraud
dc.contributor.authorLeng, Kai
dc.contributor.authorChahbazian, Rosemonde
dc.contributor.authorGalkowski, K
dc.contributor.authorLoh, Kian Ping
dc.contributor.authorStranks, Samuel
dc.date.accessioned2021-04-13T23:30:45Z
dc.date.available2021-04-13T23:30:45Z
dc.identifier.issn1948-7185
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/319843
dc.description.abstractHalide perovskites are versatile semiconductors with applications including photovoltaics and light emitting devices, having modular optoelectronic properties realisable through composition and dimensionality tuning. Layered Ruddlesden-Popper perovskites are particularly interesting due to their unique two-dimensional character and charge carrier dynamics. However, long-range energy transport through exciton diffusion in these materials is not understood or realised. Here, local time-resolved luminescence mapping techniques are employed to visualize exciton transport in exfoliated flakes of the BA2MAn- 1PbnI3n+1 perovskite family. Two distinct transport regimes are uncovered, depending on the temperature range. Above 100 K, diffusion is mediated by thermally activated hopping processes between localised states. At lower temperatures, a non-uniform energetic landscape emerges in which transport is dominated by downhill energy transfer to lower energy states, leading to long-range transport over hundreds of nanometres. Efficient, long-range, and switchable downhill transfer offers exciting possibilities of controlled directional long-range transport in these 2D materials for new applications.
dc.description.sponsorshipThe authors acknowledge the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (HYPERION, Grant Agreement Number 756962). SDS acknowledges funding from the Royal Society and Tata Group (UF150033). GD acknowledges the Royal Society for funding through a Newton International Fellowship. GD and SDS acknowledge the UK Engineering and Physical Sciences Research Council (EPSRC) under grant reference EP/R023980/1. A.B. acknowledges a Robert Gardiner Scholarship and funding from Christ’s College, Cambridge. K.G. acknowledges support from the Polish Ministry of Science and Higher Education within the Mobilnosc Plus program (GrantNo.1603/MOB/V/2017/0). The authors thank Niall Goulding and Rachel Bothwell for valuable discussions.
dc.publisherAmerican Chemical Society
dc.rightsAll rights reserved
dc.titleLocal Energy Landscape Drives Long-Range Exciton Diffusion in Two-Dimensional Halide Perovskite Semiconductors
dc.typeArticle
prism.publicationNameJournal of Physical Chemistry Letters
dc.identifier.doi10.17863/CAM.66967
dcterms.dateAccepted2021-04-12
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2021-04-12
dc.contributor.orcidStranks, Samuel [0000-0002-8303-7292]
rioxxterms.typeJournal Article/Review
pubs.funder-project-idRoyal Society (UF150033)
pubs.funder-project-idEuropean Research Council (756962)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R023980/1)
pubs.funder-project-idRoyal Society (NF170533)
cam.orpheus.counter43*
rioxxterms.freetoread.startdate2024-04-13


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record