Show simple item record

dc.contributor.authorWang, Andrew A
dc.contributor.authorGunnarsdóttir, Anna B
dc.contributor.authorFawdon, Jack
dc.contributor.authorPasta, Mauro
dc.contributor.authorGrey, Clare P
dc.contributor.authorMonroe, Charles W
dc.date.accessioned2021-10-26T23:30:25Z
dc.date.available2021-10-26T23:30:25Z
dc.date.issued2021-09-10
dc.identifier.issn2380-8195
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/329916
dc.description.abstractSuperconcentrated electrolytes, being highly thermodynamically nonideal, provide a stringent proving ground for continuum transport theories. Herein, we test an ostensibly complete model of LiPF6 in ethyl-methyl carbonate (EMC) based on the Onsager-Stefan-Maxwell theory from irreversible thermodynamics. We perform synchronous magnetic resonance imaging (MRI) and chronopotentiometry to examine how superconcentrated LiPF6:EMC responds to galvanostatic polarization and open-circuit relaxation. We simulate this experiment using an independently parametrized model with six composition-dependent electrolyte properties, quantified up to saturation. Spectroscopy reveals increasing ion association and solvent coordination with salt concentration. The potentiometric MRI data agree closely with the predicted ion distributions and overpotentials, providing a completely independent validation of the theory. Superconcentrated electrolytes exhibit strong cation-anion interactions and extreme solute-volume effects that mimic elevated lithium transference. Our simulations allow surface overpotentials to be extracted from cell-voltage data to track lithium interfaces. Potentiometric MRI is a powerful tool to illuminate electrolytic transport phenomena.
dc.format.mediumPrint-Electronic
dc.languageeng
dc.publisherAmerican Chemical Society (ACS)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titlePotentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach.
dc.typeArticle
prism.endingPage3095
prism.issueIdentifier9
prism.publicationDate2021
prism.publicationNameACS Energy Lett
prism.startingPage3086
prism.volume6
dc.identifier.doi10.17863/CAM.77359
dcterms.dateAccepted2021-08-04
rioxxterms.versionofrecord10.1021/acsenergylett.1c01213
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2021-09
dc.contributor.orcidWang, Andrew A [0000-0003-1864-5213]
dc.contributor.orcidGunnarsdóttir, Anna B [0000-0001-6593-788X]
dc.contributor.orcidPasta, Mauro [0000-0002-2613-4555]
dc.contributor.orcidGrey, Clare P [0000-0001-5572-192X]
dc.contributor.orcidMonroe, Charles W [0000-0002-9894-5023]
dc.identifier.eissn2380-8195
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (835073)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/S019367/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R00661X/1)
cam.issuedOnline2021-08-15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International