Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas
dc.contributor.author | Xomalis, Angelos | |
dc.contributor.author | Zheng, Xuezhi | |
dc.contributor.author | Chikkaraddy, Rohit | |
dc.contributor.author | Koczor-Benda, Zsuzsanna | |
dc.contributor.author | Miele, Ermanno | |
dc.contributor.author | Rosta, Edina | |
dc.contributor.author | Vandenbosch, Guy AE | |
dc.contributor.author | Martínez, Alejandro | |
dc.contributor.author | Baumberg, Jeremy | |
dc.date.accessioned | 2021-11-17T00:31:15Z | |
dc.date.available | 2021-11-17T00:31:15Z | |
dc.date.issued | 2021-12-03 | |
dc.identifier.issn | 0036-8075 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/330701 | |
dc.description.abstract | <jats:title>Optomechanical upconversion</jats:title> <jats:p> Molecules have rich signatures in their spectra at infrared wavelengths and are typically accessed with dedicated spectroscopic instrumentation. Chen <jats:italic>et al</jats:italic> . and Xomalis <jats:italic>et al</jats:italic> . report optomechanical frequency upconversion from the mid-infrared to the visible domain using molecular vibrations coupled to a plasmonic nanocavity at ambient conditions (see the Perspective by Gordon). Using different nanoantenna designs, one with a nanoparticle-on-resonator and the other with nanoparticle-in-groove, both approaches show the ability to upconvert the mid-infrared vibrations of the molecules in the nanocavity to visible light wavelengths. The effect could be used to simplify infrared spectroscopy, possibly with single-molecule sensitivity. —ISO </jats:p> | |
dc.publisher | American Association for the Advancement of Science (AAAS) | |
dc.rights | All rights reserved | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
dc.title | Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas | |
dc.type | Article | |
prism.publicationName | Science | |
dc.identifier.doi | 10.17863/CAM.78146 | |
dcterms.dateAccepted | 2021-10-12 | |
rioxxterms.versionofrecord | 10.1126/science.abk2593 | |
rioxxterms.version | AM | |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | |
rioxxterms.licenseref.startdate | 2021-10-12 | |
dc.contributor.orcid | Xomalis, Angelos [0000-0001-8406-9571] | |
dc.contributor.orcid | Chikkaraddy, Rohit [0000-0002-3840-4188] | |
dc.contributor.orcid | Koczor-Benda, Zsuzsanna [0000-0002-6714-0337] | |
dc.contributor.orcid | Miele, Ermanno [0000-0001-5085-9815] | |
dc.contributor.orcid | Martínez, Alejandro [0000-0001-5448-0140] | |
dc.contributor.orcid | Baumberg, Jeremy [0000-0002-9606-9488] | |
dc.identifier.eissn | 1095-9203 | |
rioxxterms.type | Journal Article/Review | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/L027151/1) | |
pubs.funder-project-id | European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (829067) | |
pubs.funder-project-id | European Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950) | |
pubs.funder-project-id | European Commission Horizon 2020 (H2020) ERC (883703) | |
datacite.issupplementedby.url | https://doi.org/10.17863/CAM.77640 | |
cam.orpheus.success | Tue Feb 01 19:02:17 GMT 2022 - Embargo updated | * |
cam.orpheus.counter | 1 | |
rioxxterms.freetoread.startdate | 2021-12-03 |
Files in this item
This item appears in the following Collection(s)
-
Cambridge University Research Outputs
Research outputs of the University of Cambridge