Show simple item record

dc.contributor.authorGuilfoyle, Mathew R
dc.contributor.authorHelmy, Adel
dc.contributor.authorDonnelly, Joseph
dc.contributor.authorStovell, Matthew G
dc.contributor.authorTimofeev, Ivan
dc.contributor.authorPickard, John D
dc.contributor.authorCzosnyka, Marek
dc.contributor.authorSmielewski, Peter
dc.contributor.authorMenon, David
dc.contributor.authorCarpenter, Keri
dc.contributor.authorHutchinson, Peter J
dc.description.abstractTraumatic brain injury (TBI) is a major cause of death and disability, particularly amongst young people. Current intensive care management of TBI patients is targeted at maintaining normal brain physiology and preventing secondary injury. Microdialysis is an invasive monitor that permits real-time assessment of derangements in cerebral metabolism and responses to treatment. We examined the prognostic value of microdialysis parameters, and the inter-relationships with other neuromonitoring modalities to identify interventions that improve metabolism. This was an analysis of prospective data in 619 adult TBI patients requiring intensive care treatment and invasive neuromonitoring at a tertiary UK neurosciences unit. Patients had continuous measurement of intracranial pressure (ICP), arterial blood pressure (ABP), brain tissue oxygenation (PbtO2), and cerebral metabolism and were managed according to a standardized therapeutic protocol. Microdialysate was assayed hourly for metabolites including glucose, pyruvate, and lactate. Cerebral perfusion pressure (CPP) and cerebral autoregulation (PRx) were derived from the ICP and ABP. Outcome was assessed with the Glasgow Outcome Score (GOS) at 6 months. Relationships between monitoring variables was examined with generalized additive mixed models (GAMM). Lactate/Pyruvate Ratio (LPR) over the first 3 to 7 days following injury was elevated amongst patients with poor outcome and was an independent predictor of ordinal GOS (p<0.05). Significant non-linear associations were observed between LPR and cerebral glucose, CPP, and PRx (p<0.001 to p<0.05). GAMM models suggested improved cerebral metabolism (i.e. reduced LPR with CPP >70mmHg, PRx <0.1, PbtO2 >18mmHg, and brain glucose >1mM. Deranged cerebral metabolism is an important determinant of patient outcome following TBI. Variations in cerebral perfusion, oxygenation and glucose supply are associated with changes in cerebral LPR and suggest therapeutic interventions to improve cerebral metabolism. Future prospective studies are required to determine the efficacy of these strategies.
dc.publisherPublic Library of Science (PLoS)
dc.rightsAttribution 4.0 International
dc.titleCharacterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: A microdialysis study in 619 patients.
dc.publisher.departmentDepartment of Clinical Neurosciences
dc.publisher.departmentDepartment of Medicine
dc.publisher.departmentDivision of Neurosurgery
prism.publicationNamePLoS One
dc.contributor.orcidHelmy, Adel [0000-0002-0531-0556]
dc.contributor.orcidMenon, David [0000-0002-3228-9692]
dc.contributor.orcidCarpenter, Keri [0000-0001-8236-7727]
rioxxterms.typeJournal Article/Review
pubs.funder-project-idMedical Research Council (G1002277)
pubs.funder-project-idRoyal College of Surgeons of England (2016/2017)
pubs.funder-project-idEvelyn Trust (21/29)
pubs.funder-project-idMedical Research Council (G0802251)
pubs.funder-project-idMedical Research Council (G0600986)
pubs.funder-project-idMedical Research Council (G9439390)
pubs.licence-display-nameApollo Repository Deposit Licence Agreement

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International