Show simple item record

dc.contributor.authorMorgan, Emily E
dc.contributor.authorEvans, Hayden A
dc.contributor.authorPilar, Kartik
dc.contributor.authorBrown, Craig M
dc.contributor.authorClément, Raphaële J
dc.contributor.authorMaezono, Ryo
dc.contributor.authorSeshadri, Ram
dc.contributor.authorMonserrat Sanchez, Bartomeu
dc.contributor.authorCheetham, Anthony K
dc.date.accessioned2022-04-04T23:30:56Z
dc.date.available2022-04-04T23:30:56Z
dc.date.issued2022-05-10
dc.identifier.issn0897-4756
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335760
dc.description.abstractNatrium super ionic conductor (NASICON) compounds form a rich and highly chemically tunable family of crystalline materials that are of widespread interest because they include exemplars with high ionic conductivity, low thermal expansion, and redox tunability. This makes them suitable candidates for applications ranging from solid-state batteries to nuclear waste storage materials. The key to an understanding of these properties, including the origins of effective cation transport and low, anisotropic (and sometimes negative) thermal expansion, lies in the lattice dynamics associated with specific details of the crystal structure. Here we closely examine the prototypical NASICON compound, NaZr2(PO4)3, and obtain detailed insights into such behavior via variable-temperature neutron diffraction and 23Na and 31P solid-state NMR studies, coupled with comprehensive density functional theory-based calculations of NMR parameters. Temperature-dependent NMR studies yield some surprising trends in the chemical shifts and the quadrupolar coupling constants that are not captured by computation unless the underlying vibrational modes of the crystal are explicitly taken into account. Furthermore, the trajectories of the sodium, zirconium, and oxygen atoms in our dynamical simulations show good qualitative agreement with the anisotropic thermal parameters obtained at higher temperatures by neutron diffraction. The work presented here widens the utility of NMR crystallography to include thermal effects as a unique probe of interesting lattice dynamics in functional materials.
dc.publisherAmerican Chemical Society (ACS)
dc.rightsAll Rights Reserved
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved
dc.titleLattice Dynamics in the NASICON NaZr2(PO4)3 Solid Electrolyte from Temperature-Dependent Neutron Diffraction, NMR, and Ab Initio Computational Studies.
dc.typeArticle
dc.publisher.departmentDepartment of Materials Science And Metallurgy
dc.date.updated2022-04-04T10:15:49Z
prism.publicationNameChem Mater
dc.identifier.doi10.17863/CAM.83197
dcterms.dateAccepted2022-04-01
rioxxterms.versionofrecord10.1021/acs.chemmater.2c00212
rioxxterms.versionAM
dc.contributor.orcidMorgan, Emily E [0000-0002-4992-8243]
dc.contributor.orcidEvans, Hayden A [0000-0002-1331-4274]
dc.contributor.orcidPilar, Kartik [0000-0001-7708-7747]
dc.contributor.orcidBrown, Craig M [0000-0002-9637-9355]
dc.contributor.orcidClément, Raphaële J [0000-0002-3611-1162]
dc.contributor.orcidMaezono, Ryo [0000-0002-5875-971X]
dc.contributor.orcidSeshadri, Ram [0000-0001-5858-4027]
dc.contributor.orcidMonserrat Sanchez, Bartomeu [0000-0002-4233-4071]
dc.contributor.orcidCheetham, Anthony K [0000-0003-1518-4845]
dc.identifier.eissn1520-5002
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P020259/1)
cam.issuedOnline2022-04-28
cam.orpheus.successWed May 25 11:13:33 BST 2022 - Embargo updated
cam.orpheus.counter2
cam.depositDate2022-04-04
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
rioxxterms.freetoread.startdate2023-05-10


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record