Show simple item record

dc.contributor.authorSwallow, Ben
dc.contributor.authorBirrell, Paul
dc.contributor.authorBlake, Joshua
dc.contributor.authorBurgman, Mark
dc.contributor.authorChallenor, Peter
dc.contributor.authorCoffeng, Luc E
dc.contributor.authorDawid, Philip
dc.contributor.authorDe Angelis, Daniela
dc.contributor.authorGoldstein, Michael
dc.contributor.authorHemming, Victoria
dc.contributor.authorMarion, Glenn
dc.contributor.authorMcKinley, Trevelyan J
dc.contributor.authorOverton, Christopher E
dc.contributor.authorPanovska-Griffiths, Jasmina
dc.contributor.authorPellis, Lorenzo
dc.contributor.authorProbert, Will
dc.contributor.authorShea, Katriona
dc.contributor.authorVillela, Daniel
dc.contributor.authorVernon, Ian
dc.date.accessioned2022-04-28T23:30:54Z
dc.date.available2022-04-28T23:30:54Z
dc.date.issued2022-03
dc.identifier.issn1755-4365
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/336593
dc.description.abstractThe estimation of parameters and model structure for informing infectious disease response has become a focal point of the recent pandemic. However, it has also highlighted a plethora of challenges remaining in the fast and robust extraction of information using data and models to help inform policy. In this paper, we identify and discuss four broad challenges in the estimation paradigm relating to infectious disease modelling, namely the Uncertainty Quantification framework, data challenges in estimation, model-based inference and prediction, and expert judgement. We also postulate priorities in estimation methodology to facilitate preparation for future pandemics.
dc.format.mediumPrint-Electronic
dc.publisherElsevier BV
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectExpert elicitation
dc.subjectPandemic modelling
dc.subjectStatistical estimation
dc.subjectUncertainty quantification
dc.subjectForecasting
dc.subjectPandemics
dc.subjectUncertainty
dc.titleChallenges in estimation, uncertainty quantification and elicitation for pandemic modelling.
dc.typeArticle
dc.publisher.departmentDepartment of Public Health And Primary Care
dc.date.updated2022-04-28T10:14:42Z
prism.number100547
prism.publicationDate2022
prism.publicationNameEpidemics
prism.startingPage100547
prism.volume38
dc.identifier.doi10.17863/CAM.84015
dcterms.dateAccepted2022-02-09
rioxxterms.versionofrecord10.1016/j.epidem.2022.100547
rioxxterms.versionVoR
dc.contributor.orcidDe Angelis, Daniela [0000-0001-6619-6112]
dc.identifier.eissn1878-0067
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/R014604/1)
pubs.funder-project-idMRC (via University of Warwick) (MR/V038613/1)
cam.issuedOnline2022-02-10
cam.depositDate2022-04-28
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's licence is described as Attribution-NonCommercial-NoDerivatives 4.0 International