Repository logo
 

Thermal conductivity at a disordered quantum critical point

Published version
Peer-reviewed

Type

Article

Change log

Authors

Hartnoll, SA 
Ramirez, DM 
Santos, JE 

Abstract

© 2016, The Author(s). Abstract: Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T0.3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick.

Description

Keywords

Holography and condensed matter physics (AdS/CMT), Black Holes

Journal Title

Journal of High Energy Physics

Conference Name

Journal ISSN

1126-6708
1029-8479

Volume Title

2016

Publisher

Springer Science and Business Media LLC
Sponsorship
Science and Technology Facilities Council (ST/H008586/1)
Science and Technology Facilities Council (ST/J005673/1)
Science and Technology Facilities Council (ST/K00333X/1)
Science and Technology Facilities Council (ST/M00418X/1)
Science and Technology Facilities Council (ST/M007065/1)