Repository logo
 

A comparative review of tone-mapping algorithms for high dynamic range video

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Eilertsen, G 
Mantiuk, RK 
Unger, J 

Abstract

Tone-mapping constitutes a key component within the field of high dynamic range (HDR) imaging. Its importance is manifested in the vast amount of tone-mapping methods that can be found in the literature, which are the result of an active development in the area for more than two decades. Although these can accommodate most requirements for display of HDR images, new challenges arose with the advent of HDR video, calling for additional considerations in the design of tone-mapping operators (TMOs). Today, a range of TMOs exist that do support video material. We are now reaching a point where most camera captured HDR videos can be prepared in high quality without visible artifacts, for the constraints of a standard display device. In this report, we set out to summarize and categorize the research in tone-mapping as of today, distilling the most important trends and characteristics of the tone reproduction pipeline. While this gives a wide overview over the area, we then specifically focus on tone-mapping of HDR video and the problems this medium entails. First, we formulate the major challenges a video TMO needs to address. Then, we provide a description and categorization of each of the existing video TMOs. Finally, by constructing a set of quantitative measures, we evaluate the performance of a number of the operators, in order to give a hint on which can be expected to render the least amount of artifacts. This serves as a comprehensive reference, categorization and comparative assessment of the state-of-the-art in tone-mapping for HDR video.

Description

Keywords

46 Information and Computing Sciences, 4607 Graphics, Augmented Reality and Games

Journal Title

Computer Graphics Forum

Conference Name

Journal ISSN

0167-7055
1467-8659

Volume Title

36

Publisher

Wiley
Sponsorship
This project was funded by the Swedish Foundation for Strategic Research (SSF) through grant IIS11-0081, Linköping University Center for Industrial Information Technology (CENIIT), the Swedish Research Council through the Linnaeus Environment CADICS.