Repository logo
 

Characterisation of L-cell secretory mechanisms and colonic enteroendocrine cell subpopulations


Type

Thesis

Change log

Authors

Abstract

Enteroendocrine cells (EECs) are chemosensitive cells of the gastrointestinal epithelium that exert a wide range of physiological effects via production and secretion of hormones in response to ingested nutrients, bacterial metabolites and systemic signals. Glucagon-like peptide-1 (GLP-1) is one such hormone secreted from so-called L-cells found in both the small and large intestines. GLP-1 exerts an anorexigenic effect and together with glucose- dependent insulinotropic polypeptide (GIP), restores postprandial normoglycaemia through the incretin effect. These effects are exploited by GLP-1 analogues in the treatment of type 2 diabetes. GLP-1 may also contribute to weight-loss and remission of type 2 diabetes following bariatric surgery which increases postprandial GLP-1 excursions.

Here we investigated stimulus secretion coupling in L-cells. A novel 2D culture system from murine small intestinal organoids was established as an in vitro model. This was used to characterise synergistic stimulation of GLP-1 secretion in response to concomitant stimulation by bile acids through the Gs-protein coupled receptor GPBAR1 and free fatty acids through the Gq-coupled receptor FFAR1.

Roughly half of colonic, but not small intestinal, L-cells co-produce the orexigenic peptide insulin-like peptide 5 (INSL5). This hitherto poorly examined subpopulation of L-cells was characterised through transcriptomic analysis, intracellular calcium imaging (using a novel GCaMP6F-based transgenic mouse model), LC/MS peptide quantification and 3D super resolution microscopy (3D-SIM). Based on the observed prevalent co-storage of GLP-1 and INSL5 in secretory vesicles and similar secretory responses of both hormones to a range of different stimuli strengths (including short chain fatty acids, angiotensin II and arginine vasopressin (AVP)) it was concluded that GLP-1 and INSL5 are co-secreted, rather than being selectively recruited by different stimuli.

To further characterise the diversity of colonic EECs, single cell RNA-sequencing (scRNA-seq) was performed on cells isolated from mice with a pan-EEC fluorescent marker (NeuroD1- Cre:Rosa26-EYFP). This illustrated that INSL5-producing L-cells form one of two transcriptomically distinct subpopulations of L-cells in the murine colon, with the other distinguished by expression of neurotensin (Nts). Another major EEC subpopulation, enterochromaffin (EC) cells could be split into three groups, mechanosensitive and pro- inflammatory EC cells distinguished by Piezo2 and Tac1 expression, respectively and a third Sct-expressing group. Immunofluorescent labelling and RT-qPCR analysis revealed that the Nts-expressing and Insl5-expressing L-cell subpopulations are proximally and distally enriched in the murine colon, respectively. In primary cultures, angiotensin II and AVP stimulated INSL5, GLP-1 and PYY but not NTS secretion, correlating with selective expression profiles of the cognate receptors in the L-cell subpopulations.

In summary, the work presented suggests that different L-cell subpopulations exist that respond to different stimuli, but that hormones co-expressed in individual L-cells are co- released upon stimulation. Differences in receptor expression between these subpopulations and other EEC-populations might be exploitable for selective hormone recruitment for the therapy of diabetes, obesity and other diseases.

Description

Date

2018-09-27

Advisors

Gribble, Fiona
Reimann, Frank

Keywords

INSL5, GLP-1, Enteroendocrine cells, Intestinal Organoids, scRNA-seq, L-cells, Gut peptides, Diabetes, Obesity, Colon, Small intestine, Neurotensin

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
Funded through the Wellcome Trust doctoral training program in metabolic and cardiovascular disease.