Repository logo
 

Analytical and numerical techniques for wave scattering


Type

Thesis

Change log

Authors

Abstract

In this thesis, we study the mathematical solution of wave scattering problems which describe the behaviour of waves incident on obstacles and are highly relevant to a raft of applications in the aerospace industry. The techniques considered in the present work can be broadly classed into two categories: analytically based methods which use special transforms and functions to provide a near-complete mathematical description of the scattering process, and numerical techniques which select an approximate solution from a general finite-dimensional space of possible candidates. The first part of this thesis addresses an analytical approach to the scattering of acoustic and vortical waves on an infinite periodic arrangement of finite-length flat blades in parallel mean flow. This geometry serves as an unwrapped model of the fan components in turbo-machinery. Our contributions include a novel semi-analytical solution based on the Wiener–Hopf technique that extends previous work by lifting the restriction that adjacent blades overlap, and a comprehensive study of the composition of the outgoing energy flux for acoustic wave scattering on this array of blades. These results provide an insight into the importance of energy conversion between the unsteady vorticity shed from the trailing edges of the cascade blades and the acoustic field. Furthermore, we show that the balance of incoming and outgoing energy fluxes of the unsteady field provides a convenient tool for understanding several interesting scattering symmetries on this geometry. In the second part of the thesis, we focus on numerical techniques based on the boundary integral method which allows us to write the governing equations for zero mean flow in the form of Fredholm integral equations. We study the solution of these integral equations using collocation methods for two-dimensional scatterers with smooth and Lipschitz boundaries. Our contributions are as follows: Firstly, we explore the extent to which least-squares oversampling can improve collocation. We provide rigorous analysis that proves guaranteed convergence for small amounts of oversampling and shows that superlinear oversampling can ensure faster asymptotic convergence rates of the method. Secondly, we examine the computation of the entries in the discrete linear system representing the continuous integral equation in collocation methods for hybrid numerical-asymptotic basis spaces on simple geometric shapes in the context of high-frequency wave scattering. This requires the computation of singular highly-oscillatory integrals and we develop efficient numerical methods that can compute these integrals at frequency-independent cost. Finally, we provide a general result that allows the construction of recurrences for the efficient computation of quadrature moments in a broad class of Filon quadrature methods, and we show how this framework can also be used to accelerate certain Levin quadrature methods.

Description

Date

2021-06-15

Advisors

Peake, Nigel
Iserles, Arieh

Keywords

numerical analysis, aeroacoustics, complex analysis, collocation methods, highly oscillatory integrals

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
EPSRC (1946594)
Engineering and Physical Sciences Research Council (1946594)
Supported by EPSRC grant EP/L016516/1