Repository logo
 

Path from Photorealism to Perceptual Realism


Type

Thesis

Change log

Authors

Zhong, Fangcheng 

Abstract

Photorealism in computer graphics — rendering images that appear as realistic as photographs — has matured to the point that it is now widely used in industry. With emerging 3D display technologies, the next big challenge in graphics is to achieve Perceptual Realism — producing virtual imagery that is perceptually indistinguishable from real-world 3D scenes. Such a significant upgrade in the level of realism offers highly immersive and engaging experiences that have the potential to revolutionise numerous aspects of life and society, including entertainment, social networks, education, business, research, engineering, and design.

While perceptual realism puts strict requirements on the quality of reproduction, the virtual scene does not have to be identical in light distributions to its physical counterpart to be perceptually realistic, providing that it is visually indistinguishable to human eyes. Due to the limitations of human vision, a significant improvement in perceptual realism can, in principle, be achieved by fulfilling the essential visual requirements with sufficient qualities and without having to reconstruct the physically accurate distribution of lights. In this dissertation, we start by discussing the capabilities and limits of the human visual system, which serves as a basis for the analysis of the essential visual requirements for perceptual realism. Next, we introduce a Perceptually Realistic Graphics (PRG) pipeline consisting of the acquisition, representation, and reproduction of the plenoptic function of a 3D scene. Finally, we demonstrate that taking advantage of the limits and mechanisms of the human visual system can significantly improve this pipeline.

Specifically, we present three approaches to push the quality of virtual imagery towards perceptual realism. First, we introduce DiCE, a real-time rendering algorithm that exploits the binocular fusion mechanism of the human visual system to boost the perceived local contrast of stereoscopic displays. The method was inspired by an established model of binocular contrast fusion. To optimise the experience of binocular fusion, we proposed and empirically validated a rivalry-prediction model that better controls rivalry. Next, we introduce Dark Stereo, another real-time rendering algorithm that facilitates depth perception from binocular depth cues for stereoscopic displays, especially those under low luminance. The algorithm was designed based on a proposed model of stereo constancy that predicts the precision of binocular depth cues for a given contrast and luminance. Both DiCE and Dark Stereo have been experimentally demonstrated to be effective in improving realism. Their real-time performance also makes them readily integrable into any existing VR rendering pipeline. Nonetheless, only improving rendering is not sufficient to meet all the visual requirements for perceptual realism. The overall fidelity of a typical stereoscopic VR display is still confined by its limited dynamic range, low spatial resolution, optical aberrations, and vergence-accommodation conflicts. To push the limits of the overall fidelity, we present a High-Dynamic-Range Multi-Focal Stereo display (HDR-MF-S display) with an end-to-end imaging and rendering system. The system can visually reproduce real-world 3D objects with high resolution, accurate colour, a wide dynamic range and contrast, and most depth cues, including binocular disparity and focal depth cues, and permits a direct comparison between real and virtual scenes. It is the first work that achieves a close perceptual match between a physical 3D object and its virtual counterpart. The fidelity of reproduction has been confirmed by a Visual Turing Test (VTT) where naive participants failed to discern any difference between the real and virtual objects in more than half of the trials. The test provides insights to better understand the conditions necessary to achieve perceptual realism. In the long term, we foresee this system as a crucial step in the development of perceptually realistic graphics, for not only a quality unprecedentedly achieved but also a fundamental approach that can effectively identify bottlenecks and direct future studies for perceptually realistic graphics.

Description

Date

2022-09-30

Advisors

Mantiuk, Rafal

Keywords

3D display, computer graphics, mixed reality, perceptual realism, perceptually realistic graphics, rendering, virtual reality

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
European Commission Horizon 2020 (H2020) Marie Sklodowska-Curie actions (765911)