Repository logo
 

Compressive behavior and failure mechanisms of freestanding and composite 3D graphitic foams

cam.issuedOnline2018-08-09
dc.contributor.authorFleck, NA
dc.contributor.authorNakanishi, K
dc.contributor.orcidFleck, Norman [0000-0003-0224-1804]
dc.contributor.orcidNakanishi, Kenichi [0000-0003-3816-1806]
dc.date.accessioned2018-11-10T00:30:20Z
dc.date.available2018-11-10T00:30:20Z
dc.date.issued2018-10-15
dc.description.abstractOpen-cell graphitic foams were fabricated by chemical vapor deposition using nickel templates and their compressive responses were measured over a range of relative densities. The mechanical response required an interpretation in terms of a hierarchical micromechanical model, spanning 3 distinct length scales. The power law scaling of elastic modulus and yield strength versus relative density suggests that the cell walls of the graphitic foam deform by bending. The length scale of the unit cell of the foam is set by the length of the struts comprising the cell wall, and is termed level I. The cell walls comprise hollow triangular tubes, and bending of these strut-like tubes involves axial stretching of the tube walls. This length scale is termed level II. In turn, the tube walls form a wavy stack of graphitic layers, and this waviness induces interlayer shear of the graphitic layers when the tube walls are subjected to axial stretch. The thickness of the tube wall defines the third length scale, termed level III. We show that the addition of a thin, flexible ceramic Al2O3 scaffold stiffens and strengthens the foam, yet preserves the power law scaling. The hierarchical model gives fresh insight into the mechanical properties of foams with cell walls made from emergent 2D layered solids.
dc.description.sponsorshipWe acknowledge funding from EPSRC (Grant No. EP/K016636/1, GRAPHTED) and the ERC (Grant No. 279342, InsituNANO; Grant No. 669764, MULTILAT). A.I.A. acknowledges the 2014 Green Talents Research Stay program from The German Federal Ministry of Education and Research (BMBF) and the EU Marie Sklodowska-Curie (Grant No. 645725, FRIENDS2). K.N. acknowledges funding from the EPSRC Cambridge NanoDTC (Grant No. EP/G037221/1).
dc.identifier.doi10.17863/CAM.32267
dc.identifier.eissn1873-2453
dc.identifier.issn1359-6454
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/284897
dc.language.isoeng
dc.publisherElsevier
dc.publisher.urlhttp://dx.doi.org/10.1016/j.actamat.2018.08.012
dc.subjectCellular solids
dc.subjectChemical vapor deposition (CVD)
dc.subjectGraphene
dc.subjectMicromechanical modeling
dc.subjectStructural hierarchy
dc.titleCompressive behavior and failure mechanisms of freestanding and composite 3D graphitic foams
dc.typeArticle
dcterms.dateAccepted2018-08-07
prism.endingPage196
prism.publicationDate2018
prism.publicationNameActa Materialia
prism.startingPage187
prism.volume159
pubs.funder-project-idEPSRC (1504244)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (206409)
pubs.funder-project-idEuropean Research Council (279342)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/K016636/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/G037221/1)
rioxxterms.licenseref.startdate2018-10-15
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeJournal Article/Review
rioxxterms.versionAM
rioxxterms.versionofrecord10.1016/j.actamat.2018.08.012

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Compressive Behaviour Graphitic Foams - Accepted Manuscript.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
Licence
http://www.rioxx.net/licenses/all-rights-reserved
Loading...
Thumbnail Image
Name:
Compressive Behaviour Graphitic Foams SI - Accepted Manuscript.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
Supporting information
Licence
http://www.rioxx.net/licenses/all-rights-reserved
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DepositLicenceAgreement.pdf
Size:
417.78 KB
Format:
Adobe Portable Document Format