We will be undertaking essential maintenance work on Apollo's infrastructure on Thursday 14 August and Friday 15 August, therefore expect intermittent access to Apollo's content and search interface during that time. Please also note that Apollo's "Request a copy" service will be temporarily disabled while we undertake this work.
Repository logo
 

Variational Inference in Dynamical Systems


Loading...
Thumbnail Image

Type

Change log

Abstract

Dynamical systems are a powerful formalism to analyse the world around us. Many datasets are sequential in nature, and can be described by a discrete time evolution law. We are interested in approaching the analysis of such datasets from a probabilistic perspective. We would like to maintain justified beliefs about quantities which, though useful in explaining the behaviour of a system, may not be observable, as well as about the system's evolution itself, especially in regimes we have not yet observed in our data. The framework of statistical inference gives us the tools to do so, yet, for many systems of interest, performing inference exactly is not computationally or analytically tractable. The contribution of this thesis, then, is twofold: first, we uncover two sources of bias in existing variational inference methods applied to dynamical systems in general, and state space models whose transition function is drawn from a Gaussian process (GPSSM) in particular. We show bias can derive from assuming posteriors in non-linear systems to be jointly Gaussian, and from assuming that we can sever the dependence between latent states and transition function in state space model posteriors. Second, we propose methods to address these issues, undoing the resulting biases. We do this without compromising on computational efficiency or on the ability to scale to larger datasets and higher dimensions, compared to the methods we rectify. One method, the Markov Autoregressive Flow (Markov AF) addresses the Gaussian assumption, by providing a more flexible class of posteriors, based on normalizing flows, which can be easily evaluated, sampled, and optimised. The other method, Variationally Coupled Dynamics and Trajectories (VCDT), tackles the factorisation assumption, leveraging sparse Gaussian processes and their variational representation to reintroduce dependence between latent states and the transition function at no extra computational cost. Since the objective of inference is to maintain calibrated beliefs, if we employed approximations which are significantly biased in non-linear, noisy systems, or when there is little data available, we would have failed in our objective, as those are precisely the regimes in which uncertainty quantification is all the more important. Hence we think it is essential, if we wish to act optimally on such beliefs, to uncover, and, if possible, to correct, all sources of systematic bias in our inference methods.

Description

Date

2022-09-01

Advisors

Rasmussen, Carl Edward

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge

Rights and licensing

Except where otherwised noted, this item's license is described as All Rights Reserved
Sponsorship
Qualcomm Innovation Fund