Network-based approaches for multi-omic data integration
Repository URI
Repository DOI
Change log
Authors
Abstract
The advent of advanced high-throughput biological technologies provides opportunities to measure the whole genome at different molecular levels in biological systems, which produces different types of omic data such as genome, epigenome, transcriptome, translatome, proteome, metabolome and interactome. Biological systems are highly dynamic and complex mechanisms which involve not only the within-level functionality but also the between-level regulation. In order to uncover the complexity of biological systems, it is desirable to integrate multi-omic data to transform the multiple level data into biological knowledge about the underlying mechanisms. Due to the heterogeneity and high-dimension of multi-omic data, it is necessary to develop effective and efficient methods for multi-omic data integration. This thesis aims to develop efficient approaches for multi-omic data integration using machine learning methods and network theory. We assume that a biological system can be represented by a network with nodes denoting molecules and edges indicating functional links between molecules, in which multi-omic data can be integrated as attributes of nodes and edges. We propose four network-based approaches for multi-omic data integration using machine learning methods. Firstly, we propose an approach for gene module detection by integrating multi-condition transcriptome data and interactome data using network overlapping module detection method. We apply the approach to study the transcriptome data of human pre-implantation embryos across multiple development stages, and identify several stage-specific dynamic functional modules and genes which provide interesting biological insights. We evaluate the reproducibility of the modules by comparing with some other widely used methods and show that the intra-module genes are significantly overlapped between the different methods. Secondly, we propose an approach for gene module detection by integrating transcriptome, translatome, and interactome data using multilayer network. We apply the approach to study the ribosome profiling data of mTOR perturbed human prostate cancer cells and mine several translation efficiency regulated modules associated with mTOR perturbation. We develop an R package, TERM, for implementation of the proposed approach which offers a useful tool for the research field. Next, we propose an approach for feature selection by integrating transcriptome and interactome data using network-constrained regression. We develop a more efficient network-constrained regression method eGBL. We evaluate its performance in term of variable selection and prediction, and show that eGBL outperforms the other related regression methods. With application on the transcriptome data of human blastocysts, we select several interested genes associated with time-lapse parameters. Finally, we propose an approach for classification by integrating epigenome and transcriptome data using neural networks. We introduce a superlayer neural network (SNN) model which learns DNA methylation and gene expression data parallelly in superlayers but with cross-connections allowing crosstalks between them. We evaluate its performance on human breast cancer classification. The SNN provides superior performances and outperforms several other common machine learning methods. The approaches proposed in this thesis offer effective and efficient solutions for integration of heterogeneous high-dimensional datasets, which can be easily applied to other datasets presenting the similar structures. They are therefore applicable to many fields including but not limited to Bioinformatics and Computer Science.