Repository logo
 

On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys

Published version
Peer-reviewed

Change log

Authors

Christofidou, KA 
Pickering, EJ 
Mignanelli, PM 
Slater, TJA 

Abstract

The fcc phase of the equiatomic high entropy alloy, CrMnFeCoNi, has been recently shown to be unstable at temperatures below 800˚C. However, the stability of the constituent CrFeCoNi quaternary alloy, which forms the basis of many other high entropy systems, remains under debate and the existing literature contains very little long duration heat treatment data. Here, the phase equilibria of CrFeCoNi and CrMn0.5FeCoNi are assessed following 1000 hour exposures at 500, 700 and 900˚C. Prior to thermal exposure the cast alloys were homogenised and shown to exist as single phase fcc solid solutions. In line with previous reports, Cr rich particles were observed on the grain boundaries following the prolonged exposures but detailed electron microscopy showed that these features were M23C6 carbides resulting from the unintentional incorporation of C during production. However, no evidence was found for any other phase formation during the heat treatments of either alloy, in direct contrast to the results for CrMnFeCoNi. Consequently, it is concluded that, within the limits of the temperature and times considered, the solid solution phases of both CrFeCoNi and CrMn0.5FeCoNi are stable and that Mn has a destabilising influence when present at sufficient concentrations. This change in behaviour occurs for a Mn content between 11.1 and 20 at.%.

Description

Keywords

High-entropy alloy, Phase stability, Heat treatment, Electron microscopy

Journal Title

Intermetallics

Conference Name

Journal ISSN

0966-9795
1879-0216

Volume Title

92

Publisher

Elsevier BV
Sponsorship
Engineering and Physical Sciences Research Council (EP/M005607/1)