Generalized Stochastic Gradient Learning
Preprint
Repository URI
Repository DOI
Change log
Abstract
We study the properties of generalized stochastic gradient (GSG) learning in forwardlooking models. We examine how the conditions for stability of standard stochastic gradient (SG) learning both di1er from and are related to E-stability, which governs stability under least squares learning. SG algorithms are sensitive to units of measurement and we show that there is a transformation of variables for which E-stability governs SG stability. GSG algorithms with constant gain have a deeper justification in terms of parameter drift, robustness and risk sensitivity.
Description
Is Part Of
Publisher
Faculty of Economics
Publisher DOI
Publisher URL
Rights and licensing
Except where otherwised noted, this item's license is described as All Rights Reserved
