Autoregressive clustering for HMM speech synthesis
View / Open Files
Authors
Shannon, SM
Byrne, WJ
Publication Date
2011Journal Title
Proceedings of the 11th Annual Conference of the International Speech Communication
Conference Name
International Conference on Spoken Language Processing, Interspeech 2010
ISBN
9781617821233
Publisher
Curran Associates, Inc.
Pages
829-832
Type
Conference Object
Physical Medium
paper
Metadata
Show full item recordCitation
Shannon, S., & Byrne, W. (2011). Autoregressive clustering for HMM speech synthesis. Proceedings of the 11th Annual Conference of the International Speech Communication, 829-832. http://www.dspace.cam.ac.uk/handle/1810/226374
Abstract
The autoregressive HMM has been shown to provide efficient parameter estimation and high-quality synthesis, but in previous experiments decision trees derived from a non-autoregressive system were used.
In this paper we investigate the use of autoregressive clustering for autoregressive HMM-based speech synthesis. We describe decision tree clustering for the autoregressive HMM and highlight differences to the standard clustering procedure. Subjective listening evaluation results suggest that autoregressive clustering improves the naturalness of the resulting speech.
We find that the standard minimum description length (MDL) criterion for selecting model complexity is inappropriate for the autoregressive HMM. Investigating the effect of model complexity on naturalness, we find that a large degree of overfitting is tolerated without a substantial decrease in naturalness.
Sponsorship
This research was funded by the European Community's Seventh Framework Programme (FP7/2007-2013), grant agreement 213845 (EMIME).
Identifiers
This record's URL: http://www.dspace.cam.ac.uk/handle/1810/226374
Rights
Attribution 2.0 UK: England & Wales
Licence URL: http://creativecommons.org/licenses/by/2.0/uk/
Statistics
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk
The following licence files are associated with this item: