Repository logo
 

Neurite outgrowth on a fibronectin isoform expressed during peripheral nerve regeneration is mediated by the interaction of paxillin with alpha4beta1 integrins.


Change log

Authors

Vogelezang, Mariette 
Forster, Ulrike B 
Han, Jaewon 
Ginsberg, Mark H 
ffrench-Constant, Charles 

Abstract

BACKGROUND: The regeneration of peripheral nerve is associated with a change in the alternative splicing of the fibronectin primary gene transcript to re-express embryonic isoforms containing a binding site for alpha4beta1 integrins that promote neurite outgrowth. Here we use PC12 cells to examine the role of the interaction between paxillin and the alpha4 integrin cytoplasmic domain in neurite outgrowth. RESULTS: Expression of alpha4 with mutations in the paxillin-binding domain reduced neurite outgrowth on recombinant embryonic fibronectin fragments relative to wild type alpha4. Over-expression of paxillin promoted neurite outgrowth while a mutant isoform lacking the LD4 domain implicated in the regulation of ARF and Rac GTPases was less effective. Optimal alpha4-mediated migration in leucocytes requires spatial regulation of alpha4 phosphorylation at Ser988, a post-translational modification that blocks paxillin binding to the integrin cytoplasmic domain. In keeping with this alpha4(S988D), which mimics phosphorylated alpha4, did not promote neurite outgrowth. However, alpha4 was not phosphorylated in the PC12 cells, and a non-phosphorylatable alpha4(S988A) mutant promoted neurite outgrowth indistinguishably from the wild type integrin. CONCLUSION: We establish the importance of the alpha4 integrin-paxillin interaction in a model of axonal regeneration and highlight differing dependence on phosphorylation of alpha4 for extension of neuronal growth cones and migration of non-neural cells.

Description

RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.

Keywords

Animals, Cell Movement, Fibronectins, Gene Expression Regulation, Growth Cones, Integrin alpha4beta1, Mutation, Nerve Regeneration, Neurites, Paxillin, Peripheral Nerves, Phosphorylation, Rats

Journal Title

BMC Neurosci

Conference Name

Journal ISSN

1471-2202
1471-2202

Volume Title

Publisher

Springer Science and Business Media LLC