Understanding the epigenome using system genetics
View / Open Files
Authors
Timmer, Sander Willem
Advisors
Birney, Ewan
Date
2015-01-06Awarding Institution
University of Cambridge
Author Affiliation
European Bioinformatics Institute
Clare Hall
Qualification
Doctor of Philosophy (PhD)
Language
English
Type
Thesis
Metadata
Show full item recordCitation
Timmer, S. W. (2015). Understanding the epigenome using system genetics (Doctoral thesis). https://doi.org/10.17863/CAM.15988
Abstract
Genetics has been successful in associating DNA sequence variants to both dichotomous and continuous traits in a variety of organisms, from plant and farm animal studies to human disease. With the advent of high-throughput genotyping, there has been an almost routine gen- eration of genome-wide association studies (GWAS) between human disease traits and genomic regions. Despite this success, a particular frustration is that the majority of associated loci are in non-coding regions of the genome and thus interpretation is hard.
To improve characterisation of non-coding regions, molecular as- says can be used as a phenotype, and subsequently be used to explain how genetics alter molecular mechanisms. In this thesis, the inter- play of three molecular assays that are involved in regulating gene expression is studied. On 60 individuals, several assays are performed: FAIRE-chip, CTCF- seq, RNA-seq and DNA-seq.
In the first part, the discovery and characteristics of FAIRE-QTLs is presented. The identified FAIRE-QTLs show strong overlap with other molecular QTLs, histone modifications, and transcription factors.
The second part consists of the integration of genome-wide molecu- lar assays in a human population to reconstruct the human epigenome. Each of the molecular assays is associated with each of the other assays to discover phenotype-to-phenotype correlations. Furthermore, QTL data are used to dissect the causality for these phenotype-to-phenotype correlations in a system genetic manner.
The third part presents a comprehensive view of CTCF binding on the X chromosome, and its implications for X-chromosome inactivation. A novel X chromosome-wide CTCF effect is observed. Using the gender of each of the cell lines, observations are made about which CTCF sites are dosage-compensated, active on both chromosomes, or are only bound in females.
Keywords
genetics, epigenetics, gwas, dna, gene regulation
Rights
Attribution-NonCommercial-NoDerivs 2.0 UK: England & Wales
Licence URL: http://creativecommons.org/licenses/by-nc-nd/2.0/uk/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk
The following licence files are associated with this item: