Research data supporting "Discriminative spoken language understanding using word confusion networks"
dc.contributor.author | Henderson, Matthew | |
dc.contributor.author | Gasic, Milica | |
dc.contributor.author | Thomson, Blaise | |
dc.contributor.author | Tsiakoulis, Pirros | |
dc.contributor.author | Yu, Kai | |
dc.contributor.author | Young, Steve | |
dc.date.accessioned | 2015-06-05T08:46:36Z | |
dc.date.available | 2015-06-05T08:46:36Z | |
dc.date.issued | 2012-12-01 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/248271 | |
dc.description | This package contains the necessary data to reproduce the results in the paper, Discriminative Spoken Language Understanding Using Word Confusion Networks (Henderson et al.), or to train and test new semantic decoders. | en |
dc.description | M. Henderson, M. Gasic, Blaise Thomson, Pirros Tsiakoulis, Kai Yu, Steve Young. 'Discriminative spoken language understanding using word confusion networks'. Conference: Spoken Language Technology Workshop (SLT), 2012 IEEE. DOI: 10.1109/SLT.2012.6424218 | |
dc.format | XML format, described in README inside | en |
dc.publisher | University of Cambridge | en |
dc.rights | All Rights Reserved | en |
dc.rights.uri | https://www.rioxx.net/licenses/all-rights-reserved/ | en |
dc.subject | dialogue | en |
dc.subject | spoken language understanding | en |
dc.title | Research data supporting "Discriminative spoken language understanding using word confusion networks" | en |
dc.type | Dataset | en |
prism.publicationName | Spoken Language Technology Workshop (SLT), 2012 IEEE | |
dc.rioxxterms.funder | EPSRC, EU Seventh Framework Programme project | |
dc.rioxxterms.projectid | 287615 | |
dc.identifier.doi | 10.17863/CAM.69214 | |
pubs.declined | 2017-10-11T13:54:40.163+0100 | |
dcterms.format | xm, txt | |
datacite.issupplementto.doi | 10.1109/SLT.2012.6424218 |
Files in this item
This item appears in the following Collection(s)
-
Research Data - Engineering
-
Symplectic mapped items for data match
This collection contains all articles, datasets and conference objects to be harvested