Zobrazit minimální záznam

dc.contributor.authorBriant, Men
dc.contributor.authorEinav, Amiten
dc.date.accessioned2016-04-21T11:54:49Z
dc.date.available2016-04-21T11:54:49Z
dc.date.issued2016-06-01en
dc.identifier.citationBriant & Einav. Journal of Statistical Physics (2016). doi: 10.1007/s10955-016-1517-9en
dc.identifier.issn0022-4715
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/255110
dc.description.abstract© 2016, Springer Science+Business Media New York. The Boltzmann–Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann–Nordheim equation for bosons, in dimension d⩾ 3. We show existence and uniqueness locally in time for any initial data in L∞(1 + |v|s) with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order.
dc.language.isoenen
dc.publisherSpringer
dc.titleOn the Cauchy Problem for the Homogeneous Boltzmann–Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Momentsen
dc.typeArticle
prism.endingPage1156
prism.issueIdentifier5en
prism.publicationDate2016en
prism.publicationNameJournal of Statistical Physicsen
prism.startingPage1108
prism.volume163en
dc.rioxxterms.funderEPSRC
dc.rioxxterms.projectidEP/H023348/1
dc.rioxxterms.projectidEP/L002302/1
dcterms.dateAccepted2016-04-01en
rioxxterms.versionofrecord10.1007/s10955-016-1517-9en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2016-06-01en
dc.identifier.eissn1572-9613
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/L002302/1)
pubs.funder-project-idEPSRC (EP/H023348/1)
cam.issuedOnline2016-04-12en
rioxxterms.freetoread.startdate2017-04-12


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam