Measuring theta?? via muon neutrino to electron neutrino oscillations in the MINOS experiment
View / Open Files
Authors
Toner, Ruth Bushnell
Date
2012-01-10Awarding Institution
University of Cambridge
Author Affiliation
Department of Physics
Qualification
Doctor of Philosophy (PhD)
Type
Thesis
Metadata
Show full item recordCitation
Toner, R. B. (2012). Measuring theta?? via muon neutrino to electron neutrino oscillations in the MINOS experiment (Doctoral thesis). https://doi.org/10.17863/CAM.11706
Description
This thesis is not available on this repository until the author agrees to make it public. If you are the author of this thesis and would like to make your work openly available, please contact us: thesis@repository.cam.ac.uk.
The Library can supply a digital copy for private research purposes; interested parties should submit the request form here: http://www.lib.cam.ac.uk/collections/departments/digital-content-unit/ordering-images
Please note that print copies of theses may be available for consultation in the Cambridge University Library's Manuscript reading room. Admission details are at http://www.lib.cam.ac.uk/collections/departments/manuscripts-university-archives
Abstract
One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter B13 . This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to sin2(W13 ) by 27% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out B13 = 0 at 91 %. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at sin2 (2B13 ) < 0.09(0.015) for the Normal (Inverted) Hierarchy and 6cp = 0.