Repository logo
 

The Gaia -ESO Survey: Low- α element stars in the Galactic bulge

Published version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Recio-Blanco, A 
Rojas-Arriagada, A 
de Laverny, P 
Mikolaitis, S 
Hill, V 

Abstract

We take advantage of the Gaia-ESO Survey iDR4 bulge data to search for abundance anomalies that could shed light on the composite nature of the Milky Way bulge. The α-element (Mg, Si, and whenever available, Ca) abundances, and their trends with Fe abundances have been analysed for a total of 776 bulge stars. In addition, the aluminum abundances and their ratio to Fe and Mg have also been examined. Our analysis reveals the existence of low-α element abundance stars with respect to the standard bulge sequence in the [α/ Fe] versus [Fe/H] plane. Eighteen objects present deviations in [α/ Fe] ranging from 2.1 to 5.3σ with respect to the median standard value. Those stars do not show Mg-Al anti-correlation patterns. Incidentally, this sign of the existence of multiple stellar populations is reported firmly for the first time for the bulge globular cluster NGC 6522. The identified low-α abundance stars have chemical patterns that are compatible with those of the thin disc. Their link with massive dwarf galaxies accretion seems unlikely, as larger deviations in α abundance and Al would be expected. The vision of a bulge composite nature and a complex formation process is reinforced by our results. The approach used, which is a multi-method and model-driven analysis of high resolution data, seems crucial to reveal this complexity.

Description

Keywords

Galaxy: bulge, Galaxy: abundances, Galaxy: stellar content

Journal Title

Astronomy and Astrophysics

Conference Name

Journal ISSN

0004-6361
1432-0746

Volume Title

602

Publisher

EDP Sciences
Sponsorship
European Research Council (320360)
A.R.B., P.d.L., and V.H. acknowledge financial support form the ANR 14-CE33-014-01. This work was partly supported by the European Union FP7 programme through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. We acknowledge the support from INAF and Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) in the form of the grant “Premiale VLT 2012”. The results presented here benefit from discussions held during the Gaia-ESO workshops and conferences supported by the ESF (European Science Foundation) through the GREAT Research Network Programme. M. Zoccali gratefully acknowledge support by the Ministry of Economy, Development, and Tourism’s Millenium Science Initiative through grant IC120009, awarded to the Millenium Institute of Astrophysics (MAS), by Fondecyt Regular 1150345 and by the BASAL-CATA Center for Astrophysics and Associated Technologies PFB-06.